Skip to main content
Log in

3D CFD simulation and experimental validation of the baffle number effect on the solar still performance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work investigates the effect of the baffle number on the solar still efficiency for four baffle numbers: 3, 7, 11, and 15. A three-dimensional numerical model is developed using the commercial computational fluid dynamics (CFD) code "Ansys Fluent". An experimental study was conducted to measure the solar radiation intensity, the wind velocity, and the temperature of all solar still components. The CFD developed model is validated by comparing the simulated temperature profiles against measurement’s data. The highest temperature, reached on the absorber, is 87.56 °C at 1 p.m. The CFD simulation is performed using the volume of fluid (VOF) method. The solar radiation is captured using the discrete ordinates (DO), whereas turbulence is accounted for by the RNG k-ε model. Moreover, grid independent results are obtained using a 2.2 million cells. The obtained results show a heat transfer acceleration by raising the baffle number. In fact, using 3, 7, 11, and 15 baffles increases the water temperature by 26.37%, 29.38%, 34.06%, 37.36% and the freshwater productivity by 9.7%, 10.4%, 10.65%, and 10.925%, respectively, i.e., enhancing the efficiency of the solar still.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

DO:

Discrete ordinates

SS:

Solar still

SSSS:

Single slope solar still

2D:

Two dimensional

3D:

Three dimensional

References

  1. Mohamed SA, Hassan H. Investigation the performance of new designed solar still of rhombus shaped based on new model. Sol Energy. 2022. https://doi.org/10.1016/j.solener.2021.11.039.

    Article  Google Scholar 

  2. Czajkowski A, Remiorz L, Pawlak S, Remiorz E, Szyguła J, Marek D, et al. Global water crisis: concept of a new interactive shower panel based on IoT and cloud computing for rational water consumption. Appl Sci. 2021. https://doi.org/10.3390/app11094081.

    Article  Google Scholar 

  3. Bouabidi A, Ayadi A, Nasraoui H, Driss Z, Abid M. Study of solar chimney in Tunisia: effect of the chimney configurations on the local flow characteristics. Energy Build. 2018. https://doi.org/10.1016/j.enbuild.2018.01.049.

    Article  Google Scholar 

  4. Nasraoui H, Driss Z, Ayadi A, Bouabidi A, Kchaou H. Numerical and experimental study of the impact of conical chimney angle on the thermodynamic characteristics of a solar chimney power plant. Proc Inst Mech Eng Part E J Process Mech Eng. 2019. https://doi.org/10.1177/0954408919859160.

    Article  Google Scholar 

  5. do Carmo ZD, Brasil Maia C, Reza Safaei M. Performance evaluation of various nanofluids for parabolic trough collectors. Sustain Energy Technol Assess. 2022. https://doi.org/10.1016/j.seta.2021.101865.

    Article  Google Scholar 

  6. Farahani SD, Alibeigi M, Zakinia A, Goodarzi M. The effect of microchannel-porous media and nanofluid on temperature and performance of CPV system. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-021-11087-5.

    Article  Google Scholar 

  7. Maithani R, Kumar A, Gholamali Zadeh P, Safaei MR, Gholamalizadeh E. Empirical correlations development for heat transfer and friction factor of a solar rectangular air passage with spherical-shaped turbulence promoters. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08551-8.

    Article  Google Scholar 

  8. Jathar LD, Ganesan S, Shahapurkar K, Soudagar MEM, Mujtaba MA, Anqi AE, et al. Effect of various factors and diverse approaches to enhance the performance of solar stills: a comprehensive review. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-021-10826-y.

    Article  Google Scholar 

  9. Al Adel Z, Bouabidi A, Chrigui M, et al. Temperature prediction of a single slope solar still using CFD simulation. In: Walha L, Jarraya A, Djemal F, Chouchane M, Aifaoui N, Chaari F, et al., editors. Design and modeling of mechanical systems—V. Cham: Springer International Publishing; 2023. p. 500–8.

    Chapter  Google Scholar 

  10. Cardoso MKB, da Silva KS, Silva CB, de Lima GGC, de Medeiros KM, de Lima CAP. Low-cost solar still with corrugated absorber basin for water desalination. J Braz Soc Mech Sci Eng. 2022. https://doi.org/10.1007/s40430-022-03520-z.

    Article  Google Scholar 

  11. Hemmat Esfe M, Esfandeh S, Kamyab MH, Toghraie D. Simulation of the impact of solar radiation intensity on the performance of economical solar water desalination still in Semnan province. Case Stud Therm Eng. 2021. https://doi.org/10.1016/j.csite.2021.101471.

    Article  Google Scholar 

  12. Mouhsin N, Bouzaid M, Taha-Janan M, Oubrek M. Modeling and experimental study of cascade solar still. SN Appl Sci. 2020. https://doi.org/10.1007/s42452-020-2521-x.

    Article  Google Scholar 

  13. Sharshir SW, Rozza MA, Joseph A, Kandeal AW, Tareemi AA, Abou-Taleb F, et al. A new trapezoidal pyramid solar still design with multi thermal enhancers. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2022.118699.

    Article  Google Scholar 

  14. Balachandran GB, David PW, Alexander AB, Athikesavan MM, Chellam PVP, Kumar KKS, et al. A relative study on energy and exergy analysis between conventional single slope and novel stepped absorbable plate solar stills. Environ Sci Pollut Res. 2021. https://doi.org/10.1007/s11356-021-14640-9.

    Article  Google Scholar 

  15. Abdullah AS, Omara ZM, Alarjani A, Essa FA. Experimental investigation of a new design of drum solar still with reflectors under different conditions. Case Stud Therm Eng. 2021. https://doi.org/10.1016/j.csite.2021.100850.

    Article  Google Scholar 

  16. Khodabandeh E, Safaei MR, Akbari S, Akbari OA, Alrashed AAAA. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy. 2018. https://doi.org/10.1016/j.renene.2018.01.023.

    Article  Google Scholar 

  17. Khosravi R, Rabiei S, Khaki M, Safaei MR, Goodarzi M. Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10828-w.

    Article  Google Scholar 

  18. Olia H, Torabi M, Bahiraei M, Ahmadi MH, Goodarzi M, Safaei MR. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. Appl Sci. 2019. https://doi.org/10.3390/app9030463.

    Article  Google Scholar 

  19. Safaei MR, Goshayeshi HR, Chaer I. Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM. Energies. 2019. https://doi.org/10.3390/en12102002.

    Article  Google Scholar 

  20. Sarafraz MM, Safaei MR. Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.04.091.

    Article  Google Scholar 

  21. Sarafraz MM, Tlili I, Abdul Baseer M, Safaei MR. Potential of solar collectors for clean thermal energy production in smart cities using nanofluids: experimental assessment and efficiency improvement. Appl Sci. 2019. https://doi.org/10.3390/app9091877.

    Article  Google Scholar 

  22. Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR, Goodarzi M. Thermal evaluation of graphene nanoplatelets nanofluid in a fast-responding HP with the potential use in solar systems in smart cities. Appl Sci. 2019. https://doi.org/10.3390/app9102101.

    Article  Google Scholar 

  23. Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM). Physica A. 2019. https://doi.org/10.1016/j.physa.2019.122146.

    Article  Google Scholar 

  24. Jamshed W, Uma Devi SS, Goodarzi M, Prakash M, Sooppy Nisar K, Zakarya M, et al. Evaluating the unsteady casson nanofluid over a stretching sheet with solar thermal radiation: an optimal case study. Case Stud Therm Eng. 2021. https://doi.org/10.1016/j.csite.2021.101160.

    Article  Google Scholar 

  25. Modi KV, Jani HK, Gamit ID. Impact of orientation and water depth on productivity of single-basin dual-slope solar still with Al2O3 and CuO nanoparticles. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-09351-1.

    Article  Google Scholar 

  26. Nayi KH, Modi KV. Effect of cost-free energy storage material and saline water depth on the performance of square pyramid solar still: a mathematical and experimental study. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-09598-8.

    Article  Google Scholar 

  27. Nougriaya SK, Chopra MK, Gupta B, Baredar P, Parmar H. Influence of basin water depth and energy storage materials on productivity of solar still: a review. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2020.11.796.

    Article  Google Scholar 

  28. Mishra AK, Meraj M, Tiwari GN, Ahmad A. Effect of inclination on internal heat and mass transfer of active solar still having conical condensing cover. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2020.06.105.

    Article  Google Scholar 

  29. Goshayeshi HR, Safaei MR. Effect of absorber plate surface shape and glass cover inclination angle on the performance of a passive solar still. Int J Numer Methods Heat Fluid Flow. 2020. https://doi.org/10.1108/HFF-01-2019-0018.

    Article  Google Scholar 

  30. Arunkumar T, Kabeel AE, Raj K, Denkenberger D, Sathyamurthy R, Ragupathy P, et al. Productivity enhancement of solar still by using porous absorber with bubble-wrap insulation. J Clean Prod. 2018. https://doi.org/10.1016/j.jclepro.2018.05.199.

    Article  Google Scholar 

  31. Balachandran GB, David PW, Radhakrishnan V, Ali MNA, Baskaran VK, Virumandi D, et al. Investigation on the performance enhancement of single-slope solar still using green fibre insulation derived from artocarpus heterophyllus rags reinforced with azadirachta indica gum. Environ Sci Pollut Res. 2021. https://doi.org/10.1007/s11356-021-13062-x.

    Article  Google Scholar 

  32. Sathish Kumar TR, Jegadheeswaran S, Chandramohan P. Performance investigation on fin type solar still with paraffin wax as energy storage media. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7882-7.

    Article  Google Scholar 

  33. Panchal H, Sathyamurthy R. Experimental analysis of single-basin solar still with porous fins. Int J Ambient Energy. 2020. https://doi.org/10.1080/01430750.2017.1360206.

    Article  Google Scholar 

  34. Abdullah AS, Omara ZM, Essa FA, Alqsair UF, Aljaghtham M, Mansir IB, et al. Enhancing trays solar still performance using wick finned absorber, nano-enhanced PCM. Alex Eng J. 2022. https://doi.org/10.1016/j.aej.2022.06.033.

    Article  Google Scholar 

  35. Shoeibi S, Kargarsharifabad H, Rahbar N, Ahmadi G, Safaei MR. Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis. Sustain Energy Technol Assess. 2022. https://doi.org/10.1016/j.seta.2021.101728.

    Article  Google Scholar 

  36. Peng Y, Zahedidastjerdi A, Abdollahi A, Amindoust A, Bahrami M, Karimipour A, et al. Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08684-w.

    Article  Google Scholar 

  37. Keshtkar M, Eslami M, Jafarpur K. Effect of design parameters on performance of passive basin solar stills considering instantaneous ambient conditions: a transient CFD modeling. Sol Energy. 2020. https://doi.org/10.1016/j.solener.2020.03.068.

    Article  Google Scholar 

  38. Panchal HN, Patel N. ANSYS CFD and experimental comparison of various parameters of a solar still. Int J Ambient Energy. 2018. https://doi.org/10.1080/01430750.2017.1318785.

    Article  Google Scholar 

  39. Mittal G. An unsteady CFD modelling of a single slope solar still. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.02.090.

    Article  Google Scholar 

  40. Benhadji Serradj DE, Anderson TN, Nates RJ. The use of passive baffles to increase the yield of a single slope solar still. Sol Energy. 2021. https://doi.org/10.1016/j.solener.2021.08.054.

    Article  Google Scholar 

  41. Irsyad AR, Kim B, Duc DH, Hassan SHBA, Fushinobu K. Numerical study of heat transfer and chemical kinetics of solar thermochemical reactor for hydrogen production. In: AIP conference proceedings; 2018. https://doi.org/10.1063/1.5046586.

  42. Cuce E, Sen H, Cuce PM. Numerical performance modelling of solar chimney power plants: Influence of chimney height for a pilot plant in Manzanares, Spain. Sustain Energy Technol Assess. 2020. https://doi.org/10.1016/j.seta.2020.100704.

    Article  Google Scholar 

  43. Ngamsidhiphongsa N, Ponpesh P, Shotipruk A, Arpornwichanop A. Analysis of the imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions. Energy Convers Manag. 2020. https://doi.org/10.1016/j.enconman.2020.112808.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhayar Al Adel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Adel, Z., Bouabidi, A. & Chrigui, M. 3D CFD simulation and experimental validation of the baffle number effect on the solar still performance. J Therm Anal Calorim 148, 2171–2188 (2023). https://doi.org/10.1007/s10973-022-11856-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11856-w

Keywords

Navigation