Skip to main content
Log in

Microstructures and properties of polybutylene succinate/soy protein isolate composites compatibilized by “in situ” graft copolymer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polybutylene succinate (PBS)/soy protein isolate (SPI) bio-composites were “in situ” compatibilized with addition of dibenzoyl peroxide (BPO) and polyethylene glycol (400) diacrylate (PEG400DA) by melt processing. The microstructures and various properties of the uncompatibilized and compatibilized bio-composites were investigated thoroughly. The increased tensile strength and water resistance of the compatibilized composites were ascribed to the improved compatibility and enhanced adhesion in the composites. The results of Fourier transform infrared spectroscopy (FTIR), Soxhlet extraction experiments, scanning electron microscopy (SEM) and dynamic mechanical analyses (DMA) revealed the presence of the “in situ” graft copolymer (SPI-g-PEG400DA-g-PBS), which strengthened interfaces between PBS matrix and SPI domain. The “in situ” graft copolymer improved the hydrophobicity and thermal stability of the composites. Moreover, it also augmented the entanglements between the phases and increased viscosity and elasticity of the melt. Furthermore, the crystallinity of the composites was also increased by the grafts. However, the crystal structure of PBS was not modified in the bio-composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour Technol. 2021;325:124739. https://doi.org/10.1016/j.biortech.2021.124739.

    Article  CAS  PubMed  Google Scholar 

  2. Zini E, Scandola M. Green composites: an overview. Polym Compos. 2011;32(12):1905–15. https://doi.org/10.1002/pc.21224.

    Article  CAS  Google Scholar 

  3. Deng Y, Thomas NL. Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur Polym J. 2015;71:534–46. https://doi.org/10.1016/j.eurpolymj.2015.08.029.

    Article  CAS  Google Scholar 

  4. Henke L, Zarrinbakhsh N, Endres HJ, Misra M, Mohanty A. Biodegradable and bio-based green blends from carbon dioxide-derived bioplastic and poly(butylene succinate). J Polym Environ. 2017;25:499–509. https://doi.org/10.1007/s10924-016-0828-x.

    Article  CAS  Google Scholar 

  5. Li YD, Zeng JB, Wang XL, Yang KK, Wang YZ. Structure and properties of soy protein/polybutylene succinate blends with improved compatibility. Biomacromol. 2009;9(11):3157–64. https://doi.org/10.1021/bm800745p.

    Article  CAS  Google Scholar 

  6. Tang T, Zhu J, Wang WT, Ni HT. Morphology, thermal, and crystallization properties of poly(butylene succinate)-grafted Nanocrystalline Cellulose by polymerization in situ. Polym Eng Sci. 2019;59(5):928–34. https://doi.org/10.1002/pen.25038.

    Article  CAS  Google Scholar 

  7. Coutinho DF, Pashkuleva IH, Alves CM, Marques AP, Neves NM, Reis RL. The effect of chitosan on the in vitro biological performance of chitosan-poly(butylene succinate) blends. Biomacromol. 2008;9(4):1139–45. https://doi.org/10.1021/bm701268s.

    Article  CAS  Google Scholar 

  8. Zeng JB, Li YD, Zhu QY, Yang KK, Wang XL, Wang YZ. A novel biodegradable multiblock poly(ester urethane) containing poly(l-lactic acid) and poly(butylene succinate) blocks. Polymer. 2009;50(5):1178–86. https://doi.org/10.1016/j.polymer.2009.01.001.

    Article  CAS  Google Scholar 

  9. Vega-Lugo AC, Lim LT. Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res Int. 2009;42(8):933–40. https://doi.org/10.1016/j.foodres.2009.05.005.

    Article  CAS  Google Scholar 

  10. Zhu R, Liu HZ, Zhang JW. Compatibilizing effects of maleated poly(lactic acid) (PLA) on properties of PLA/soy protein composites. Ind Eng Chem Res. 2012;51(22):7786–92. https://doi.org/10.1021/ie300118x.

    Article  CAS  Google Scholar 

  11. Swain SN, Biswal SM, Nanda PK, Nayak PL. Biodegradable soy-based plastics: opportunities and challenges. J Polym Environ. 2004;12(1):35–42.

    Article  CAS  Google Scholar 

  12. Zink J, Wyrobnik T, Tobias P, Schmid M. Physical, chemical and biochemical modifications of protein-based films and coatings: an extensive review. Int J Mol Sci. 2016;17(9):1376. https://doi.org/10.3390/ijms17091376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mekonnen T, Misra M, Mohanty AK. Fermented soymeals and their reactive blends with poly(butylene adipate-co-terephthalate) in engineering biodegradable cast films for sustainable packaging. ACS Sustain Chem Eng. 2015;4:782–93. https://doi.org/10.1021/acssuschemeng.5b00782.

    Article  CAS  Google Scholar 

  14. Thakur MK, Thakur VK, Gupta RK, Pappu A. Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng. 2015;4:1–17. https://doi.org/10.1021/acssuschemeng.5b01327.

    Article  CAS  Google Scholar 

  15. Rahman MM, Byanju B, Grewell D, Lamsal BP. High-power sonication of soy proteins: hydroxyl radicals and their effects on protein structure. Ultrason Sonochem. 2020;64:105019. https://doi.org/10.1016/j.ultsonch.2020.105019.

    Article  CAS  PubMed  Google Scholar 

  16. Chen F, Zhang J. In-situ poly(butylene adipate-co-terephthalate)/soy protein concentrate composites: effects of compatibilization and composition on properties. Polymer. 2010;51:1812–9. https://doi.org/10.1016/j.polymer.2010.02.035.

    Article  CAS  Google Scholar 

  17. Ku-Marsilla KI, Verbeek CJR. Mechanical properties of thermoplastic protein from bloodmeal and polyester blends. Macromol Mater Eng. 2014;299:885–95. https://doi.org/10.1002/mame.201300396.

    Article  CAS  Google Scholar 

  18. Li YD, Zeng JB, Li WD, Yang KK, Wang XL, Wang YZ. Rheology, crystallization, and biodegradability of blends based on soy protein and chemically modified poly(butylene succinate). Ind Eng Chem Res. 2009;48:4817–25. https://doi.org/10.1021/ie801718f.

    Article  CAS  Google Scholar 

  19. Bonham S, Misra M, Mohanty AK. Effect of co-rotation and counter-rotation extrusion processing on the thermal and mechanical properties, and morphology of plasticized soy protein isolate and poly(butylene succinate) blends. Macromol Mater Eng. 2011;296:788–801. https://doi.org/10.1002/mame.201000404.

    Article  CAS  Google Scholar 

  20. Renoux J, Dani J, Douchain C, Prashantha K, Krawczak P. Simultaneous plasticization and blending of isolate soy protein with poly[(butylene succinate)-co-adipate] by one-step extrusion process. J Appl Polym Sci. 2018;135:46442. https://doi.org/10.1002/app.46442.

    Article  CAS  Google Scholar 

  21. Reddy MM, Mohanty AK, Misra M. Biodegradable blends from plasticized soy meal, polycaprolactone, and poly(butylene succinate). Macromol Mater Eng. 2012;297:455–63. https://doi.org/10.1002/mame.201100203.

    Article  CAS  Google Scholar 

  22. Chen F, Zhang J. A new approach for morphology control of poly(butylene adipate-co-terephthalate) and soy protein blends. Polymer. 2009;50:3770–7. https://doi.org/10.1016/j.polymer.2009.06.004.

    Article  CAS  Google Scholar 

  23. Coltelli M, Aliotta L, Gigante V, Maria B, Patrizia C, Elodie B, Markus S, Andreas S, Andrea L. Preparation and compatibilization of PBS/whey protein isolate based blends. Molecules. 2020;25:3313. https://doi.org/10.3390/molecules25143313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anstey A, Muniyasamy S, Reddy MM, Mohanty A. Processability and biodegradability evaluation of composites from poly(butylene succinate) (PBS) bioplastic and biofuel co-products from Ontario. J Polym Environ. 2014;22:209–18. https://doi.org/10.1007/s10924-013-0633-8.

    Article  CAS  Google Scholar 

  25. Zhang JW, Jiang L, Zhu LY, Jane JL. Morphology and properties of soy protein and polylactide blends. Biomacromol. 2006;7(5):1551–61. https://doi.org/10.1021/bm050888p.

    Article  CAS  Google Scholar 

  26. Mungara P, Chang T, Zhu J, Jane J. Processing and physical properties of plastics made from soy protein polyester blends. J Polym Environ. 2002;10:31–7. https://doi.org/10.1023/A:1021018022824.

    Article  CAS  Google Scholar 

  27. Jacob J, Mrinal B. Properties of reactively blended soy protein and modified polyesters. Polym Int. 1999;48:1165–72. https://doi.org/10.1002/(SICI)1097-0126(199911)48:113.0.CO;2-L.

    Article  Google Scholar 

  28. Yan Y, Dou Q. Effect of peroxide on compatibility, microstructure, rheology, crystallization, and mechanical properties of PBS/waxy starch composites. Starch-Stärke. 2021;73:2000184. https://doi.org/10.1002/star.202000184.

    Article  CAS  Google Scholar 

  29. Bai J, Pei HJ, Zhou XP, Xie XL. Reactive compatibilization and properties of low-cost and high-performance PBAT/thermoplastic starch blends. Eur Polym J. 2021;143:110198. https://doi.org/10.1016/j.eurpolymj.2020.110198.

    Article  CAS  Google Scholar 

  30. Graiver D, Waikul LH, Berger C, Narayan R. Biodegradable soy protein-polyester blends by reactive extrusion process. J Appl Polym Sci. 2004;92:3231–9. https://doi.org/10.1002/app.20344.

    Article  CAS  Google Scholar 

  31. Chen L, Cheng H, Xiong J, Zhu YT, Zhang HP, Xiong X, Liu YM, Yu J, Guo ZX. Improved mechanical properties of poly(butylene succinate) membrane by co-electrospinning with gelatin. Chin J Polym Sci. 2018;36:1063–9. https://doi.org/10.1007/s10118-018-2112-0.

    Article  CAS  Google Scholar 

  32. Zhou X, Mohanty A, Misra M. A new biodegradable injection moulded bioplastic from modified soy meal and poly(butylene adipate-co-terephthalate): effect of plasticizer and denaturant. J Polym Environ. 2013;21:615–22. https://doi.org/10.1007/s10924-013-0578-y.

    Article  CAS  Google Scholar 

  33. Bautista M, De Ilarduya AM, Alla A, Vives M, Morato J, Munoz-Guerra S. Cationic poly(butylene succinate) copolyesters. Eur Polym J. 2016;75:329–42. https://doi.org/10.1016/j.eurpolymj.2015.12.012.

    Article  CAS  Google Scholar 

  34. Ku-Marsilla KI, Verbeek CJR. Compatibilization of protein thermoplastics and polybutylene succinate blends. Macromol Mater Eng. 2015;300:161–71. https://doi.org/10.1002/mame.201400141.

    Article  CAS  Google Scholar 

  35. Correlo VM, Pinho ED, Pashkuleva I, Bhattacharya M, Neves NM, Reis RL. Water absorption and degradation characteristics of chitosan-based polyesters and hydroxyapatite composites. Macromol Biosci. 2007;7(3):354–63. https://doi.org/10.1002/mabi.200600233.

    Article  CAS  PubMed  Google Scholar 

  36. Wang YY, Zhang AQ, Wang YX, Wang XB, Xu N, Jiang LZ. Effects of irradiation on the structure and properties of glycosylated soybean proteins. Food Funct. 2020;11:1635–46. https://doi.org/10.1039/C9FO01879D.

    Article  PubMed  Google Scholar 

  37. Xu FJ, Zhang W, Zhang SF, Li L, Li JZ, Zhang Y. Preparation and characterization of poly(vinyl alcohol) and 1,2,3-propanetriol diglycidyl ether incorporated soy protein isolate-based films. J Appl Polym Sci. 2015;132:42578. https://doi.org/10.1002/app.42578.

    Article  CAS  Google Scholar 

  38. Thirmizir MZA, Ishak ZAM, Taib RM, Pillai KSKCK, Salim MS, Hassan A, Abu Bakar MB. The effects of melt grafted maleated polybutylene succinate on the properties of poly(hydroxybutyrate-co-hydroxyhexanoate)/polybutylene succinate blends. J Vinyl Additive Technol. 2021;27(3):567–88. https://doi.org/10.1002/vnl.21828.

    Article  CAS  Google Scholar 

  39. Chen XY, Ru Y, Chen FL, Wang XC, Zhao XY, Ao Q. FTIR spectroscopic characterization of soy proteins obtained through AOT reverse micelles. Food Hydrocolloids. 2013;31:435–7. https://doi.org/10.1016/j.foodhyd.2012.11.017.

    Article  CAS  Google Scholar 

  40. Kim BK, Cho D, Kwon OH, Park WH, Lee JH. Effects of electron beam irradiation on the gel fraction, thermal and mechanical properties of poly(butylene succinate) crosslinked by multi-functional monomer. Mater Des. 2015;87:428–35. https://doi.org/10.1016/j.matdes.2015.08.046.

    Article  CAS  Google Scholar 

  41. Chen ZS, Lin N, Gao SJ, Liu CH, Huang J, Chang PR. Sustainable composites from biodegradable polyester modified with Camelina meal: synergistic effects of multicomponents on ductility enhancement. ACS Sustain Chem Eng. 2016;4(6):3228–34. https://doi.org/10.1021/acssuschemeng.6b00255.

    Article  CAS  Google Scholar 

  42. Chen SY, Cheng L, Huang HM, Zou FZ, Zhao HP. Fabrication and properties of poly(butylene succinate) biocomposites reinforced by waste silkworm silk fabric. Compos Part A Appl Sci Manuf. 2017;95:125–31. https://doi.org/10.1016/j.compositesa.2017.01.004.

    Article  CAS  Google Scholar 

  43. Fang Q, Zhu M, Yu SR, Sui G, Yang XP. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Mater Sci Eng B. 2016;214:1–10. https://doi.org/10.1016/j.mseb.2016.08.004.

    Article  CAS  Google Scholar 

  44. Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35:1464–8. https://doi.org/10.1021/ac60203a013.

    Article  CAS  Google Scholar 

  45. Dash S, Swain SK. Effect of nanoboron nitride on the physical and chemical properties of soy protein. Compos Sci Technol. 2013;84:39–43. https://doi.org/10.1016/j.compscitech.2013.05.004.

    Article  CAS  Google Scholar 

  46. Chikh A, Benhamida A, Kaci M, Bourmaud A, Bruzaud S. Recyclability assessment of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(butylene succinate) blends: combined influence of sepiolite and compatibilizer. Polym Degrad Stab. 2017;142:234–43. https://doi.org/10.1016/j.polymdegradstab.2017.07.014.

    Article  CAS  Google Scholar 

  47. Chen X, Gug J, Sobkowicz MJ. Role of polymer/filler interactions in the linear viscoelasticity of poly(butylene succinate)/fumed silica nanocomposite. Compos Sci Technol. 2014;95:8–15. https://doi.org/10.1016/j.compscitech.2014.01.025.

    Article  CAS  Google Scholar 

  48. Chen F, Zhang J. Effects of plasticization and shear stress on phase structure development and properties of soy protein blends. ACS Appl Mater Interfaces. 2010;2:3324–32. https://doi.org/10.1021/am100751c.

    Article  CAS  PubMed  Google Scholar 

  49. Cassagnau P. Melt rheology of organoclay and fumed silica nanocomposites. Polymer. 2008;49:2183–96. https://doi.org/10.1016/j.polymer.2007.12.035.

    Article  CAS  Google Scholar 

  50. Oliviero M, Sorrentino L, Cafiero L, Galzerano B, Sorrentino A, Iannace S. Foaming behavior of bio-based blends based on thermoplastic gelatin and poly(butylene succinate). J Appl Polym Sci. 2015;132:42704. https://doi.org/10.1002/app.42704.

    Article  CAS  Google Scholar 

  51. Su F, Wang JZ, Zhu SJ, Liu SL, Yu XQ, Li SM. Synthesis and characterization of novel carboxymethyl chitosan grafted polylactide hydrogels for controlled drug delivery. Polym Adv Technol. 2015;26:924–31. https://doi.org/10.1002/pat.3503.

    Article  CAS  Google Scholar 

  52. Qiu ZB, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer. 2003;44:7781–5. https://doi.org/10.1016/j.polymer.2003.10.045.

    Article  CAS  Google Scholar 

  53. Correlo VM, Boesel LF, Pinho E, Costa-Pinto AR, da Silva MLA, Bhattacharya M, Mano JF, Neves NM, Reis RL. Melt-based compression-molded scaffolds from chitosan-polyester blends and composites: Morphology and mechanical properties. J Biomed Mater Res. 2009;91(2):489–504. https://doi.org/10.1002/jbm.a.32221.

    Article  CAS  Google Scholar 

  54. Han YF, Li K, Chen H, Li JZ. Properties of soy protein isolate biopolymer film modified by graphene. Polymers (Basel). 2017;9:312. https://doi.org/10.3390/polym9080312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

QD contributed to the research conception and experimental design. The preparation experiments and data analyses were executed by XZ. The first draft was written by XZ and QD revised the manuscript. The authors approved the final manuscript.

Corresponding author

Correspondence to Qiang Dou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1657 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Xx., Dou, Q. Microstructures and properties of polybutylene succinate/soy protein isolate composites compatibilized by “in situ” graft copolymer. J Therm Anal Calorim 148, 1921–1934 (2023). https://doi.org/10.1007/s10973-022-11855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11855-x

Keywords

Navigation