Skip to main content
Log in

Ageing process effect on thermal and rheological behaviour of asphalt binder modified with recycled polyethylene and waste tyre rubber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study aims to achieve a further understanding on interactions in the asphalt binder modified by adding waste tyre rubber (WTR) and recycled polyethylene (RPE), as well as using the ageing process. Thermogravimetric analyses showed that the mixture thermal stability was only affected after the ageing process, which increased by the addition of up to 3% RPE. Differential scanning calorimetry (DSC) showed no RPE melting after the binder’s ageing, suggesting a homogeneous mixture formation. Infrared spectroscopy analyses demonstrated that the binder ageing process promoted the hydroxyl groups oxidation to carbonyl groups, reducing the system polarity and promoting a better binder-RPE interaction. Rheological analyses showed that WTR and RPE addition improved the binder’s properties; however, after ageing process, samples containing RPE had a distinctive behaviour forming a homogeneous mixture.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sun L, Xin X, Ren J. Asphalt modification using nano-materials and polymers composite considering high and low temperature performance. Constr Build Mater. 2017;133:358–66.

    Article  CAS  Google Scholar 

  2. Zhu C, Zhang H, Xu G, Shi C. Aging rheological characteristics of SBR modified asphalt with multi-dimensional nanomaterials. Constr Build Mater. 2017;151:388–93.

    Article  CAS  Google Scholar 

  3. Ahmedzade P, Yilmaz M. Effect of polyester resin additive on the properties of asphalt binders and mixtures. Constr Build Mater. 2008;22:481–6.

    Article  Google Scholar 

  4. Hu Z, Zhang H, Wang S, Xu T. Thermal-oxidative aging mechanism of asphalt binder based on isothermal thermal analysis at the SARA level. Constr Build Mater. 2020;255:119349.

    Article  CAS  Google Scholar 

  5. Ding X, Chen L, Ma T, Ma H, Gu L, Chen T, et al. Laboratory investigation of the recycled asphalt concrete with stable crumb rubber asphalt binder. Constr Build Mater. 2019;203:552–7.

    Article  Google Scholar 

  6. Wang M, Li R, Wen Y, Pei J, Xing X, Chen Z. Rheological and aging behaviors of liquid rubber modified asphalt binders. Constr Build Mater. 2019;227:116719.

    Article  CAS  Google Scholar 

  7. Diab A, Enieb M, Singh D. Influence of aging on properties of polymer-modified asphalt. Constr Build Mater. 2019;196:54–65.

    Article  CAS  Google Scholar 

  8. Behnood A, ModiriGharehveran M. Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur Polym J. 2019;112:766–91.

    Article  CAS  Google Scholar 

  9. Hu X, Zhang H, Bai T, Pan P, Xu P, Walubita LF. Effects of using brake pad waste powder as a filler material on the rheological and mechanical properties of a sulfur modified asphalt mixture. Constr Build Mater. 2019;198:742–50.

    Article  CAS  Google Scholar 

  10. Nguyen VH, Le VP. Performance evaluation of sulfur as alternative binder additive for asphalt mixtures. Int J Pavement Res Technol. 2019;12:380–7. https://doi.org/10.1007/s42947-019-0045-9.

    Article  Google Scholar 

  11. Chen Z, Yi J, Chen Z, Feng D. Properties of asphalt binder modified by corn stalk fiber. Constr Build Mater. 2019;212:225–35.

    Article  Google Scholar 

  12. Arabani M, Shabani A. Evaluation of the ceramic fiber modified asphalt binder. Constr Build Mater. 2019;205:377–86.

    Article  Google Scholar 

  13. Shan L, Qi X, Duan X, Liu S, Chen J. Effect of styrene-butadiene-styrene (SBS) on the rheological behavior of asphalt binders. Constr Build Mater. 2020;231:117076.

    Article  CAS  Google Scholar 

  14. Liu J, Yan K, Liu J, Guo D. Evaluation of the characteristics of Trinidad Lake Asphalt and Styrene–Butadiene–rubber compound modified binder. Constr Build Mater. 2019;202:614–21.

    Article  CAS  Google Scholar 

  15. Yan K, Chen J, You L, Tian S. Characteristics of compound asphalt modified by waste tire rubber (WTR) and ethylene vinyl acetate (EVA): conventional, rheological, and microstructural properties. J Clean Prod. 2020;258:120732.

    Article  CAS  Google Scholar 

  16. Ge D, Yan K, You Z, Xu H. Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Constr Build Mater. 2016;126:66–76.

    Article  CAS  Google Scholar 

  17. Punith VS, Veeraragavan A. Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive. J Mater Civ Eng. 2007;19:500–7.

    Article  CAS  Google Scholar 

  18. Ho S, Church R, Klassen K, Law B, MacLeod D, Zanzotto L. Study of recycled polyethylene materials as asphalt modifiers. Can J Civ Eng. 2006;33:968–81. https://doi.org/10.1139/l06-044.

    Article  CAS  Google Scholar 

  19. Hossein Hamedi G, Ghalandari Shamami K, MazhariPakenari M. Effect of ultra-high-molecular-weight polyethylene on the performance characteristics of hot mix asphalt. Constr Build Mater. 2020;258:119729.

    Article  CAS  Google Scholar 

  20. Maharaj C, Maharaj R, Maynard J. The effect of polyethylene terephthalate particle size and concentration on the properties of asphalt and bitumen as an additive. Prog Rubber Plast Recycl Technol. 2015;31:1–23. https://doi.org/10.1177/147776061503100101.

    Article  Google Scholar 

  21. Abed AH, Bahia HU. Enhancement of permanent deformation resistance of modified asphalt concrete mixtures with nano-high density polyethylene. Constr Build Mater. 2020;236:117604.

    Article  CAS  Google Scholar 

  22. Kim H, Jeong K-D, Lee MS, Lee S-J. Performance properties of CRM binders with wax warm additives. Constr Build Mater. 2014;66:356–60.

    Article  Google Scholar 

  23. Kim HH, Lee S-J. Effect of crumb rubber on viscosity of rubberized asphalt binders containing wax additives. Constr Build Mater. 2015;95:65–73.

    Article  Google Scholar 

  24. Xiao F, Wenbin Zhao PE, Amirkhanian SN. Fatigue behavior of rubberized asphalt concrete mixtures containing warm asphalt additives. Constr Build Mater. 2009;23:3144–51.

    Article  Google Scholar 

  25. Azizian MF, Nelson PO, Thayumanavan P, Williamson KJ. Environmental impact of highway construction and repair materials on surface and ground waters. Waste Manag. 2003;23:719–28.

    Article  CAS  Google Scholar 

  26. Xiang L, Cheng J, Que G. Microstructure and performance of crumb rubber modified asphalt. Constr Build Mater. 2009;23:3586–90.

    Article  Google Scholar 

  27. Kim HH, Lee S-J. Evaluation of rubber influence on cracking resistance of crumb rubber modified binders with wax additives. Can J Civ Eng. 2016;43:326–33. https://doi.org/10.1139/cjce-2014-0510.

    Article  CAS  Google Scholar 

  28. Mothé MG, Perin M, Mothé CG. Comparative thermal study of heavy crude oils by DSC. Pet Sci Technol. 2016;34:314–20. https://doi.org/10.1080/10916466.2015.1136328.

    Article  CAS  Google Scholar 

  29. Mothé MG, Mothé CG, de Carvalho CHM, de Oliveira MCK. Thermal investigation of heavy crude oil by simultaneous TG–DSC–FTIR and EDXRF. J Therm Anal Calorim. 2013;113:525–31. https://doi.org/10.1007/s10973-013-3124-1.

    Article  CAS  Google Scholar 

  30. Mothé MG, Leite LFM, Mothé CG. Kinetic parameters of different asphalt binders by thermal analysis. J Therm Anal Calorim. 2011;106:679–84. https://doi.org/10.1007/s10973-011-1386-z.

    Article  CAS  Google Scholar 

  31. Cong P, Wang J, Li K, Chen S. Physical and rheological properties of asphalt binders containing various antiaging agents. Fuel. 2012;97:678–84.

    Article  CAS  Google Scholar 

  32. Blundell D, Beckett D, Willcocks P. Routine crystallinity measurements of polymers by d.s.c. Polymer (Guildf). 1981;22:704–7.

    Article  CAS  Google Scholar 

  33. da Graça DCS, Cardoso G, Mothé CG. Thermal behavior of asphalt binder with modifying agents from industrial residues. J Therm Anal Calorim. 2019;138:3619–33. https://doi.org/10.1007/s10973-019-08371-w.

    Article  CAS  Google Scholar 

  34. Lucena MCC, de Soares SA, Soares JB. Characterization and thermal behavior of polymer-modified asphalt. Mater Res. 2004;7(529):34.

    Google Scholar 

  35. Hofko B, Alavi MZ, Grothe H, Jones D, Harvey J. Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders. Mater Struct. 2017;50:187. https://doi.org/10.1617/s11527-017-1059-x.

    Article  CAS  Google Scholar 

  36. Behnood A, Olek J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Constr Build Mater. 2017;151:464–78.

    Article  CAS  Google Scholar 

  37. Attaelmanan M, Feng CP, Al A-H. Laboratory evaluation of HMA with high density polyethylene as a modifier. Constr Build Mater. 2011;25:2764–70.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian research funding agencies CAPES and CNPQ for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

MEG contributed to conceptualisation, methodology, and data collection. FRS contributed to methodology, data collection, original draft writing preparation, and results analysis. PRSB performed data collection, results analysis, writing-reviewing, and editing. EP contributed to methodology, writing-reviewing, and editing. ROS contributed to fund raising, conceptualisation, supervision, methodology, results analysis, writing-reviewing, and editing.

Corresponding author

Correspondence to Fernando Reinoldo Scremin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, M.E., Scremin, F.R., Bittencourt, P.R.S. et al. Ageing process effect on thermal and rheological behaviour of asphalt binder modified with recycled polyethylene and waste tyre rubber. J Therm Anal Calorim 148, 663–674 (2023). https://doi.org/10.1007/s10973-022-11810-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11810-w

Keywords

Navigation