Skip to main content
Log in

Stability analysis and implication of Darcy magnetic-radiative hybrid reactive nanofluid heat transfer over a shrinkable surface with Ohmic heating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study focused on Al\(_2\)O\(_3\)–Cu/water-based hybrid nanofluid to address the issue related to heat-mass transfer over a Darcy shrinkable surface with the magnetic field with thermal radiation effects. Variable thermal conductivity, Joule dissipation, chemical reaction with velocity, and thermal slip condition for hybrid nanofluid are also considered here. The governing equations of this study are reduced by utilizing similarity transformations before being solved numerically by the bvp4c function in MATLAB. The results also indicate the existence of multiple solutions in the shrinking sheet region for a certain amount of mass suction parameter, where the solution of the upper branch was stable while unstable for the lower branch. The influences of the chosen parameters on the velocity, temperature, skin friction coefficient, local Nusselt number, and Sherwood number are addressed and graphically illustrated. Further, it is found that due to an increase in Al\(_2\)O\(_3\) nanoparticle volume fraction, the coefficient of skin friction with heat transfer rate boosts up, whereas the Sherwood number decays. The results also reveal that increasing values of shrinking parameter decline the local Nusselt number but upsurges skin friction coefficient. Moreover, the hybrid nanofluid velocity decreases (increases) in the first (second) solution for the enhancement of the permeability parameter. The initial solution’s positive minimum eigenvalue was revealed by stability analysis, which distinctly defined a stable and feasible flow. Boundary layer hybrid nanofluid flow in industrial applications such as extrusion processes is attributable to impulsive movement of an extensible moving surface. These results are crucial in the long term because they allow us to optimize heat transmission for cooling and heating applications, to enhance industrial growth, especially in the manufacturing and processing sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(A_1\) :

Velocity slip parameter

\(B_1\) :

Temperature slip factor

B :

Temperature slip parameter

\(B_0\) :

Magnitude of the magnetic field strength

C :

Naofluid concentrattion at the surface

\(C_\textrm{p}\) :

Specific heat in constant pressure (J kg\(^{-1}\) K\(^{-1}\))

\(C_\textrm{f}\) :

Local skin-friction coefficient

\(D_\textrm{hnf}\) :

Hybrid nanofluid mass diffusivity

\(D_\textrm{nf}\) :

Nanofluid mass diffusivity

\(D_\textrm{f}\) :

Mass diffusivity of fluid

L :

Reference length of the sheet (m)

Kc :

Chemical reaction rate

\(R_\textrm{c}\) :

Chemical reaction parameter

\(h_\textrm{f}\) :

Coefficient of heat transfer

M :

Magnetic field parameter

\(\text{Nu}_\textrm{x}\) :

Nusselt number

Nr :

Thermal radiation parameter

P :

Porous/Darcy parameter

Pr:

Prandtl number

\(Q_0\) :

Heat source/sink coefficient

\({q_\textrm{r}}\) :

Thermal radiative heat flux (W m\(^{-2}\))

\(\text{Re}_\textrm{x}\) :

Local Reynolds number

\(\textrm{Re}_\textrm{L}\) :

Reynolds number

S :

Suction or injection parameter

Sc:

Schmidt number

\(\textrm{Sh}_\textrm{x}\) :

Sherwood number

t :

Time (s)

\(T_\textrm{w}(x)\) :

Shrinking surface temperature (K)

T :

Nanofluid temperature (K)

\(T_{\infty }\) :

Free-stream temperature (K)

\(u_\textrm{w}(x)\) :

Shrinking sheet velocity (ms\(^{-1}\))

u,  v :

x-, y-component of fluid velocity (ms\(^{-1}\))

xy :

Coordinates along the interface and normal to it

\({\phi _1}\) :

Al\(_{2}\)O\(_{3}\) nanoparticles’s solid volume fraction

\({\phi _2}\) :

Cu nanoparticles’s solid volume fraction

\(\eta\) :

Similarity variable

\((\rho C_\textrm{p})_\textrm{nf}\) :

Mono nanofluid’s heat capacitance (J kg\(^{-1}\) K\(^{-1}\))

\((\rho C_\textrm{p})_\textrm{hnf}\) :

Hybrid nanofluid’s heat capacitance (J kg\(^{-1}\) K\(^{-1}\))

\(\kappa _\textrm{f}\) :

Thermal conductivity of fluid (Wm\(^{-1}\)K)

\(\kappa _\textrm{nf}\) :

Mono nanofluid’s thermal conductivity (Wm\(^{-1}\)K)

\(\kappa _\textrm{hnf}\) :

Hybrid nanofluid’s thermal conductivity (Wm\(^{-1}\)K)

\({\kappa ^*}_\textrm{hnf}\) :

Hybrid nanofluid’s variable thermal conductivity (Wm\(^{-1}\) K)

\(\kappa _\textrm{s}\) :

Nanoparticle’s thermal conductivity (Wm\(^{-1}\)K)

\(\mu _\textrm{f}\) :

Fluid dynamic viscosity (kg m\(^{-1}\) s\(^{-1})\)

\(\mu _{\text{nf}}\) :

Nono nanofluid’s effective viscosity (kg m\(^{-1}\) s\(^{-1})\)

\(\mu _{\text{hnf}}\) :

Hybrid nanofluid’s effective viscosity (kg m\(^{-1}\) s\(^{-1})\)

\(\nu _\textrm{f}\) :

Kinematic fluid viscosity, \(\mu _\textrm{f}/\rho _\textrm{f}\) (\(\textrm{m}^2 \,\textrm{s}^{-1})\)

\(\rho _\textrm{f}\) :

Fluid density (kg m\(^{-3}\))

\(\rho _\textrm{nf}\) :

Mono nanofluid’s effective density (kg m\(^{-3}\))

\(\rho _\textrm{hnf}\) :

Hybrid nanofluid’s effective density of (kg m\(^{-3}\))

\(\rho _\textrm{s}\) :

Density of nanoparticles (kg m\(^{-3}\))

\(\beta\) :

Heat source/sink parameter

\(\lambda\) :

Shrinking parameter

\(\gamma\) :

Eigenvalue

\(\gamma _1\) :

Minimum eigenvalue

\(\Phi (\eta )\) :

Dimensionless concentration profile

\(\sigma ^*\) :

Stefan–Boltzmann constant

\(\sigma\) :

Electrical conductivity of the fluid (\(\Omega \,\textrm{m}^{-1}\))

\(\sigma _\textrm{nf}\) :

Mono nanofluid’s electrical conductivity (\(\Omega \,\textrm{m}^{-1}\))

\(\sigma_{\text{hnf}}\) :

Hybrid nanofluid’s electrical conductivity (\(\Omega \,\textrm{m}^{-1}\))

\(\theta (\eta )\) :

Dimensionless temperature

\(\psi\) :

Stream function

\(\gamma\) :

Eigenvalue parameter

\(\tau\) :

Dimensionless time variable

\(\epsilon\) :

Variable thermal conductivity parameter

f:

Fluid fraction

nf:

Mono nanofluid

hnf:

Hybrid nanofluid

References

  1. Abu Bakar S, Md Arifin N, Khashiie NS, Bachok N. Hybrid nanofluid flow over a permeable shrinking sheet embedded in a porous medium with radiation and slip impacts. Mathematics. 2021;9(8):878. https://doi.org/10.3390/math9080878.

    Article  Google Scholar 

  2. Ahmad F, Abdal S, Ayed H, Hussain S, Salim S, Almatroud AO. The improved thermal efficiency of Maxwell hybrid nanofluid comprising of graphene oxide plus silver/kerosene oil over stretching sheet. Case Stud Therm Eng. 2021;27: 101257. https://doi.org/10.1016/j.csite.2021.101257.

    Article  Google Scholar 

  3. Chamkha AJ. Non-Darcy hydromagnetic free convection from a cone and a wedge in porous media. Int Commun Heat Mass Transf. 1996;23(6):875–87.

    Article  CAS  Google Scholar 

  4. Chamkha AJ. MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects. Appl Math Model. 1997;21(10):603–9.

    Article  Google Scholar 

  5. Chamkha AJ. Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. Int J Eng Sci. 1997;35(10–11):975–86.

    Article  CAS  Google Scholar 

  6. Chamkha AJ. Solar radiation assisted natural convection in uniform porous medium supported by a vertical flat plate. J Heat Transf. 1997;119(1):89–96. https://doi.org/10.1115/1.2824104.

    Article  CAS  Google Scholar 

  7. Chamkha AJ. Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numer Heat Transf Part A Appl. 1997;32(6):653–75.

    Article  Google Scholar 

  8. Chamkha AJ. Hydromagnetic three-dimensional free convection on a vertical stretching surface with heat generation or absorption. Int J Heat Fluid Flow. 1999;20(1):84–92.

    Article  CAS  Google Scholar 

  9. Chamkha AJ. Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink. Int J Eng Sci. 2000;38(15):1699–712.

    Article  Google Scholar 

  10. Chamkha AJ, Al-Mudhaf AF, Pop I. Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium. Int Commun Heat Mass Transf. 2006;33(9):1096–102.

    Article  Google Scholar 

  11. Chamkha AJ, Ben-Nakhi A. MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour’s effects. Heat Mass Transf. 2008;44(7):845–56.

    Article  Google Scholar 

  12. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States). 1995. https://www.osti.gov/servlets/purl/196525

  13. Dero S, Shaikh H, Talpur GH, Khan I, Alharbim SO, Andualem M. Influence of a Darcy–Forchheimer porous medium on the flow of a radiative magnetized rotating hybrid nanofluid over a shrinking surface. Sci Rep. 2021;11(1):1–16. https://doi.org/10.1038/s41598-021-03470-x.

    Article  CAS  Google Scholar 

  14. Eid MR, Nafe MA. Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition. Waves Random Complex Media. 2022;32(3):1103–27. https://doi.org/10.1080/17455030.2020.1810365.

    Article  Google Scholar 

  15. Farhana K, Kadirgama K, Rahman MM, Noor MM, Ramasamy D, Samykano M, Najafi G, Sidik NAC, Tarlochan F. Significance of alumina in nanofluid technology. J Therm Anal Calorim. 2019;138(2):1107–26. https://doi.org/10.1007/s10973-019-08305-6.

    Article  CAS  Google Scholar 

  16. Ghosh S, Mukhopadhyay S. Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip. Neural Comput Appl. 2020;32(11):7201–11. https://doi.org/10.1007/s00521-019-04221-w.

    Article  Google Scholar 

  17. Harris SD, Ingham DB, Pop I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp Porous Media. 2009;77(2):267–85. https://doi.org/10.1007/s11242-008-9309-6.

    Article  Google Scholar 

  18. Jamaludin A, Naganthran K, Nazar R, Pop I. MHD mixed convection stagnation-point flow of \(Cu-Al_2O_3\)/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. Eur J Mech B/Fluids. 2020;84:71–80. https://doi.org/10.1016/j.euromechflu.2020.05.017.

    Article  Google Scholar 

  19. Khan U, Zaib A, Ishak A, Sherif ESM, Waini I, Chu YM, Pop I. Radiative mixed convective flow induced by hybrid nanofluid over a porous vertical cylinder in a porous media with irregular heat sink/source. Case Stud Therm Eng. 2022;30: 101711. https://doi.org/10.1016/j.csite.2021.101711.

    Article  Google Scholar 

  20. Khan TS, Sene N, Mouldi A, Brahmia A. Heat and mass transfer of the Darcy–Forchheimer Casson hybrid nanofluid flow due to an extending curved surface. J Nanomater. 2022. https://doi.org/10.1155/2022/3979168.

    Article  Google Scholar 

  21. Khashiie NS, Arifin NM, Nazar R, Hafidzuddin EH, Wahi N, Pop I. Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chin J Phys. 2020;64:251–63.

    Article  CAS  Google Scholar 

  22. Khashiie NS, Arifin NM, Pop I, Wahid NS. Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: a comparative analysis. Alex Eng J. 2020;59(3):1787–98. https://doi.org/10.1016/j.cjph.2019.11.008.

    Article  CAS  Google Scholar 

  23. Khashiie NS, Wahid NS, Md Arifin N, Pop I. MHD stagnation-point flow of hybrid nanofluid with convective heated shrinking disk, viscous dissipation and Joule heating effects. Neural Comput Appl. 2022. https://doi.org/10.1007/s00521-022-07371-6.

    Article  Google Scholar 

  24. Krishna MV. Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature. Int Commun Heat Mass Transf. 2020;119: 104927. https://doi.org/10.1016/j.icheatmasstransfer.2020.104927.

    Article  Google Scholar 

  25. Krishna MV. Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature. Int Commun Heat Mass Transf. 2021;126: 105399. https://doi.org/10.1016/j.icheatmasstransfer.2021.105399.

    Article  Google Scholar 

  26. Krishna MV. Chemical reaction, heat absorption and Newtonian heating on MHD free convective Casson hybrid nanofluids past an infinite oscillating vertical porous plate. Int Commun Heat Mass Transf. 2022;138: 106327. https://doi.org/10.1016/j.icheatmasstransfer.2022.106327.

    Article  CAS  Google Scholar 

  27. Krishna MV. Hall and ion slip effects and chemical reaction on MHD rotating convective flow past an infinite vertical porous plate with ramped wall and uniform wall temperatures. Biomass Convers Biorefin. 2022. https://doi.org/10.1007/s13399-022-03160-2.

    Article  Google Scholar 

  28. Krishna MV, Chamkha AJ. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results Phys. 2019;15: 102652. https://doi.org/10.1016/j.rinp.2019.102652.

    Article  Google Scholar 

  29. Krishna MV, Chamkha AJ. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int Commun Heat Mass Transf. 2020;113: 104494. https://doi.org/10.1016/j.icheatmasstransfer.2020.104494.

    Article  CAS  Google Scholar 

  30. Krishna MV, Chamkha AJ. Hall and ion slip effects on magnetohydrodynamic convective rotating flow of Jeffreys fluid over an impulsively moving vertical plate embedded in a saturated porous medium with ramped wall temperature. Numer Methods Partial Differ Equ. 2021;37(3):2150–77. https://doi.org/10.1002/num.22670.

    Article  Google Scholar 

  31. Krishna MV, Subba Reddy G, Chamkha AJ. Hall effects on unsteady MHD oscillatory free convective flow of second grade fluid through porous medium between two vertical plates. Phys Fluids. 2018;30(2): 023106.

    Article  Google Scholar 

  32. Krishna MV, Ahamad NA, Chamkha AJ. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alex Eng J. 2020;59(2):565–77. https://doi.org/10.1016/j.aej.2020.01.043.

    Article  Google Scholar 

  33. Krishna MV, Sravanthi CS, Gorla RSR. Hall and ion slip effects on MHD rotating flow of ciliary propulsion of microscopic organism through porous media. Int Commun Heat Mass Transf. 2020;112: 104500. https://doi.org/10.1016/j.icheatmasstransfer.2020.104500.

    Article  CAS  Google Scholar 

  34. Krishna MV, Ahamad NA, Chamkha AJ. Radiation absorption on MHD convective flow of nanofluids through vertically travelling absorbent plate. Ain Shams Eng J. 2021;12(3):3043–56. https://doi.org/10.1016/j.asej.2020.10.028.

    Article  Google Scholar 

  35. Krishna MV, Ahamad NA, Chamkha AJ. Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical moving porous surface. Ain Shams Eng J. 2021;12(2):2099–109. https://doi.org/10.1016/j.asej.2020.10.013.

    Article  Google Scholar 

  36. Krishna MV, Ahamad NA, Chamkha AJ. Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid. Alex Eng J. 2021;60(1):845–58.

    Article  Google Scholar 

  37. Kumar KG, Reddy MG, Sudharani MVVNL, Shehzad SA, Chamkha AJ. Cattaneo–Christov heat diffusion phenomenon in Reiner–Philippoff fluid through a transverse magnetic field. Phys A Stat Mech Appl. 2020;541: 123330.

    Article  Google Scholar 

  38. Elangovan K, Subbarao K, Gangadhar K. Entropy minimization for variable viscous couple stress fluid flow over a channel with thermal radiation and heat source/sink. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11510-5.

    Article  Google Scholar 

  39. Ghazwani HA, Akhtar S, Almutairi S, Saleem A, Nadeem S, Mahmoud O. Insightful facts on peristalsis flow of water conveying multi-walled carbon nanoparticles through elliptical ducts with ciliated walls. Front Phys. 2022. https://doi.org/10.3389/fphy.2022.923290.

    Article  Google Scholar 

  40. Lund LA, Omar Z, Dero S, Khan I, Baleanu D, Nisar KS. Magnetized flow of Cu + Al\(_2\)O\(_3\) + H\(_2\)O hybrid nanofluid in porous medium: analysis of duality and stability. Symmetry. 2020;12(9):1513. https://doi.org/10.3390/sym12091513.

    Article  CAS  Google Scholar 

  41. Lund LA, Omar Z, Raza J, Khan I. Magnetohydrodynamic flow of Cu–Fe\(_3\)O\(_4\)/H\(_2\)O hybrid nanofluid with effect of viscous dissipation: dual similarity solutions. J Therm Anal Calorim. 2021;143(2):915–27.

    Article  CAS  Google Scholar 

  42. Magyari E, Chamkha AJ. Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface: the full analytical solution. Int J Therm Sci. 2010;49(9):1821–8.

    Article  CAS  Google Scholar 

  43. Magyari E, Pantokratoras A. Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int Commun Heat Mass Transf. 2011;38(5):554–6. https://doi.org/10.1016/j.icheatmasstransfer.2011.03.006.

    Article  Google Scholar 

  44. McCash LB, Akhtar S, Nadeem S, Saleem S. Entropy analysis of the peristaltic flow of hybrid nanofluid inside an elliptic duct with sinusoidally advancing boundaries. Entropy. 2021;23(6):732. https://doi.org/10.3390/e23060732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Merkin JH. On dual solutions occurring in mixed convection in a porous medium. J Eng Math. 1986;20(2):171–9. https://doi.org/10.1007/BF00042775.

    Article  Google Scholar 

  46. Modather M, Rashad AM, Chamkha AJ. An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium. Turk J Eng Environ Sci. 2009;33(4):245–58.

    CAS  Google Scholar 

  47. Nadeem S, Qadeer S, Akhtar S, El Shafey AM, Issakhov A. Eigenfunction expansion method for peristaltic flow of hybrid nanofluid flow having single-walled carbon nanotube and multi-walled carbon nanotube in a wavy rectangular duct. Sci Prog. 2021;104(4):00368504211050292. https://doi.org/10.1177/00368504211050292.

    Article  CAS  Google Scholar 

  48. Nawaz M, Rafiq S, Qureshi IH, Saleem S. Combined effects of partial slip and variable diffusion coefficient on mass and heat transfer subjected to chemical reaction. Phys Scr. 2020;95(3): 035222. https://doi.org/10.1088/1402-4896/ab534b.

    Article  CAS  Google Scholar 

  49. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29(5):1326–36. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009.

    Article  Google Scholar 

  50. Pal D, Mandal G. Magnetohydrodynamic nonlinear thermal radiative heat transfer of nanofluids over a flat plate in a porous medium in existence of variable thermal conductivity and chemical reaction. Int J Ambient Energy. 2021;42(10):1167–77. https://doi.org/10.1080/01430750.2019.1592776.

    Article  CAS  Google Scholar 

  51. Shahzad MH, Awan AU, Akhtar S, Nadeem S. Entropd stability analysis on blood flow with nanoparticles through a stenosed artery having permeable walls. Sci Prog. 2022;105(2):00368504221096000.

    Article  CAS  Google Scholar 

  52. Shampine LF, Gladwell I, Thompson S. Solving ODEs with MATLAB. Cambridge: Cambridge University Press; 2003. p. 166.

    Book  Google Scholar 

  53. Singh SK, Sarkar J. Energy, exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant. Int Commun Heat Mass Transf. 2018;98:41–8. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.005.

    Article  CAS  Google Scholar 

  54. Soomro FA, Zaib A, Haq RU, Sheikholeslami M. Dual nature solution of water functionalized copper nanoparticles along a permeable shrinking cylinder: FDM approach. Int J Heat Mass Transf. 2019;129:1242–9. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.051.

    Article  CAS  Google Scholar 

  55. Sreedevi P, Sudarsana Reddy P, Chamkha A. Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Appl Sci. 2020;2(7):1–15.

    Article  Google Scholar 

  56. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al\(_2\)O\(_3\)–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A Physicochem Eng Asp. 2011;388(1–3):41–8. https://doi.org/10.1016/j.colsurfa.2011.08.005.

    Article  CAS  Google Scholar 

  57. Wahid NS, Arifin NM, Khashi’ie NS, Pop I. Marangoni hybrid nanofluid flow over a permeable infinite disk embedded in a porous medium. Int Commun Heat Mass Transf. 2021;126: 105421. https://doi.org/10.1016/j.icheatmasstransfer.2021.105421.

    Article  CAS  Google Scholar 

  58. Wahid NS, Arifin NM, Khashiie NS, Pop I. Hybrid nanofluid slip flow over an exponentially stretching/shrinking permeable sheet with heat generation. Mathematics. 2020;9(1):30. https://doi.org/10.3390/math9010030.

    Article  Google Scholar 

  59. Takhar HS, Chamkha AJ, Nath G. Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field. Int J Eng Sci. 1999;37(13):1723–36.

    Article  Google Scholar 

  60. Takhar HS, Chamkha AJ, Nath G. MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and free stream velocity. Int J Eng Sci. 2002;40(13):1511–27.

    Article  Google Scholar 

  61. Wahid NS, Md Arifin N, Safwa Khashiie N, Pop I, Bachok N, Ezad HHM. Three-dimensional stretching/shrinking flow of hybrid nanofluid with slips and joule heating. J Thermophys Heat Transf. 2022. https://doi.org/10.2514/1.T6488.

    Article  Google Scholar 

  62. Waini I, Ishak A, Pop I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int J Heat Mass Transf. 2019;136:288–97. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.101.

    Article  CAS  Google Scholar 

  63. Waini I, Ishak A, Pop I. Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with Joule heating and viscous dissipation effects. Neural Comput Appl. 2022;34(5):3783–94. https://doi.org/10.1007/s00521-021-06640-0.

    Article  Google Scholar 

  64. Waini I, Ishak A, Pop I. Multiple solutions of the unsteady hybrid nanofluid flow over a rotating disk with stability analysis. Eur J Mech B/Fluids. 2022;94:121–7. https://doi.org/10.1016/j.euromechflu.2022.02.011.

    Article  Google Scholar 

  65. Weidman PD, Kubitschek DG, Davis AMJ. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int J Eng Sci. 2006;44(11–12):730–7. https://doi.org/10.1016/j.ijengsci.2006.04.005.

    Article  CAS  Google Scholar 

  66. Weidman PD, Ali ME. Aligned and nonaligned radial stagnation flow on a stretching cylinder. Eur J Mech B/Fluids. 2011;30(1):120–8. https://doi.org/10.1016/j.euromechflu.2010.08.001.

    Article  Google Scholar 

  67. Xia WF, Ahmad S, Khan MN, Ahmad H, Rehman A, Baili J, Gia TN. Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions. Case Stud Therm Eng. 2022;32: 101893. https://doi.org/10.1016/j.csite.2022.101893.

    Article  Google Scholar 

  68. Yan L, Dero S, Khan I, Mari IA, Baleanu D, Nisar KS, Sherif ESM, Abdo HS. Dual solutions and stability analysis of magnetized hybrid nanofluid with joule heating and multiple slip conditions. Processes. 2020;8(3):332. https://doi.org/10.3390/pr8030332.

    Article  CAS  Google Scholar 

  69. Yashkun U, Zaimi K, Bakar NAA, Ishak A, Pop I. MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect. Int J Numer Methods Heat Fluid Flow. 2020. https://doi.org/10.1108/HFF-02-2020-0083.

    Article  Google Scholar 

  70. Yashkun U, Zaimi K, Ishak A, Pop I, Sidaoui R. Hybrid nanofluid flow through an exponentially stretching/shrinking sheet with mixed convection and Joule heating. Int J Numer Methods Heat Fluid Flow. 2020. https://doi.org/10.1108/HFF-07-2020-0423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed to the problem formulation and related work in bringing the manuscript to the final form. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dulal Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dulal Pal: Former Professor at Visva-Bharati University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, D., Mandal, G. Stability analysis and implication of Darcy magnetic-radiative hybrid reactive nanofluid heat transfer over a shrinkable surface with Ohmic heating. J Therm Anal Calorim 148, 2087–2104 (2023). https://doi.org/10.1007/s10973-022-11797-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11797-4

Keywords

Navigation