Skip to main content
Log in

Enhanced thermal performance of form-stable phase change materials with organic and inorganic supporting nanofillers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organic phase change materials (PCMs) are inexpensive, safe, and do not segregate. However, they exhibit a low thermal conductivity. Several papers have reported the synthesis of organic–inorganic hybrid PCMs by adding inorganic fillers to increase the thermal conductivity. However, large amounts of fillers are needed to support the shape for the encapsulation of PCMs. Herein, we propose a facile synthesis strategy that yields composite PCMs with enhanced thermal performance. Initially, 1,3:2,4-dibenzylidene sorbitol (DBS) organogel was added as an organic filler to poly(ethylene glycol) (PEG) PCMs for maintaining the form and prevent leakage. Subsequently, a small amount of an inorganic filler, graphene nanoplatelets (GNPs), was added to these organic PCMs. Consequently, the thermal conductivity and shape stabilization of the PEG/GNPs/DBS PCMs were significantly improved. These prepared composite PCMs, with excellent shape stabilization, appropriate latent heat, and ideal thermal conductivity, are potential as fillers in solar-thermal systems and energy-efficient buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ghoghaei MS, Mahmoudian A, Mohammadi O, Shafii MB, Mosleh HJ, Zandieh M, Ahmadi MH. A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems. J Therm Anal Calorim. 2021;145:1245–68.

    Article  Google Scholar 

  2. Raj CR, Suresh S, Bhavsar RR, Singh VK. Recent developments in thermo-physical property enhancement and applications of solid solid phase change materials. J Therm Anal Calorim. 2020;139:3023–49.

    Article  CAS  Google Scholar 

  3. Xu B, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl Energy. 2015;160:286–307.

    Article  Google Scholar 

  4. Sundararajan S, Samui AB, Kulkarni PS. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J Mater Chem A. 2017;5:18379–96.

    Article  CAS  Google Scholar 

  5. Kousksou T, Bruel P, Jamil A, Rhafikid TE, Zeraouli Y. Energy storage: Applications and challenges. Sol Energ Mat Sol C. 2014;120:59–80.

    Article  CAS  Google Scholar 

  6. Omara AAM, Abuelnuor AAA, Mohammed HA, Khiadani M. Phase change materials (PCMs) for improving solar still productivity: a review. J Therm Anal Calorim. 2020;139:1585–617.

    Article  CAS  Google Scholar 

  7. Lin Y, Jia Y, Alva G, Fang G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sust Energ Rev. 2018;82:2730–42.

    Article  CAS  Google Scholar 

  8. Lin Y, Alva G, Fang G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy. 2018;165:658–708.

    Article  Google Scholar 

  9. Fang GY, Li H, Chen Z, Liu X. Preparation and properties of palmitic acid/SiO2 composites with flame retardant as thermal energy storage materials. Sol Energy Mater Sol C. 2011;95:1875–81.

    Article  CAS  Google Scholar 

  10. Sundararajan S, Samui AB, Kulkarni PS. Interpenetrating phase change polymer networks based on crosslinked polyethylene glycol and poly(hydroxyethyl methacrylate). Sol Energy Mater Sol C. 2016;149:266–74.

    Article  CAS  Google Scholar 

  11. Meng QH, Hu JL. A poly(ethyleneglycol)-based smart phase change material. Sol Energ Mat Sol C. 2008;92:1260–8.

    Article  CAS  Google Scholar 

  12. Zalba B, Marın JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    Article  CAS  Google Scholar 

  13. Belessiotis GV, Papadokostaki KG, Favvas EP. Preparation and investigation of distinct and shape stable paraffin/SiO2 composite PCM nanospheres. Energy Convers Manage. 2018;168:382–94.

    Article  CAS  Google Scholar 

  14. Hasanabadi S, Sadrameli SM, Sami S. Preparation, characterization and thermal properties of surface-modified expanded perlite/paraffin as a form-stable phase change composite in concrete. J Therm Anal Calorim. 2021;144:61–9.

    Article  CAS  Google Scholar 

  15. Pramothraj M, Santosh R, Swaminathan MR, Kumaresan G. Study of effect of Al and Cu microparticles dispersed in D-Mannitol PCM for effective solar thermal energy storage. J Therm Anal Calorim. 2020;139:895–904.

    Article  CAS  Google Scholar 

  16. Trivedi GVN, Parameshwaran R. Microencapsulated phase change material suspensions for cool thermal energy storage. Mater Chem Phys. 2020;242: 122519.

    Article  CAS  Google Scholar 

  17. Qian T, Li J, Min X, Guan W, Deng Y, Ning L. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. J Mater Chem A. 2015;3:8526–36.

    Article  CAS  Google Scholar 

  18. Li Y, Li J, Deng Y, Guan W, Wang X, Qian T. Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer. Appl Energy. 2016;171:37–45.

    Article  CAS  Google Scholar 

  19. Mochane MJ, Mokhena TC, Motaung TE, Linganiso LZ. Shape-stabilized phase change materials of polyolefin/wax blends and their composites. J Therm Anal Calorim. 2020;139:2951–63.

    Article  CAS  Google Scholar 

  20. Guan W, Li J, Qian T, Wang X, Deng Y. Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers. Chem Eng J. 2015;277:56–63.

    Article  CAS  Google Scholar 

  21. Mehrali M, Latibari ST, Mahlia Mehrali M. HSC. Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials. Energy. 2013;58:628–34.

    Article  CAS  Google Scholar 

  22. Mehrali M, Latibari ST, Mehrali M, Mahlia TMI, Metselaar HSC, Naghavi MS, Sadeghinezhad E, Akhiani AR. Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl Therm Eng. 2013;61:633–40.

    Article  CAS  Google Scholar 

  23. Yang J, Tang L-S, Bao R-Y, Bai L, Liu Z-Y, Yang W, Xie B-H, Yang M-B. Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem Eng J. 2017;315:481–90.

    Article  CAS  Google Scholar 

  24. Lin Y, Cong R, Chen Y, Fang G. Thermal properties and characterization of palmitic acid/nano silicon dioxide/graphene nanoplatelet for thermal energy storage. Int J Energy Res. 2020;44:5621–33.

    Article  CAS  Google Scholar 

  25. Chen H, Xuan J, Deng Q, Gao Y. WOOD/PCM composite with enhanced energy storage density and anisotropic thermal conductivity. Prog Nat Sci: Mater Int. 2022;32:191–5.

    Article  Google Scholar 

  26. Chen C, Liu W, Wang H, Peng K. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy. 2015;152:198–206.

    Article  CAS  Google Scholar 

  27. Zhou R, Ming Z, He J, Ding Y, Jiang J. Effect of magnesium hydroxide and aluminum hydroxide on the thermal stability, latent heat and flammability properties of Paraffin/HDPE phase change blends. Polymers. 2020;12:180.

    Article  CAS  Google Scholar 

  28. Su W, Zhou T, Li Y, Lv Y. Development of microencapsulated phase change material with poly (methyl methacrylate) shell for thermal energy storage. Energy Procedia. 2019;158:4483–8.

    Article  CAS  Google Scholar 

  29. Lai W-C, Lee Y-C. Self-assembly behavior of gels composed of dibenzylidene sorbitol derivatives and poly(ethylene glycol). RSC Adv. 2016;6:98042–51.

    Article  CAS  Google Scholar 

  30. Olles JR, Slavik P, Whitelaw NK. Self-assembled gels formed in deep eutectic solvents: Supramolecular eutectogels with high ionic conductivities. Angew Chem Int Ed. 2019;58:4173–8.

    Article  Google Scholar 

  31. Steck K, Stubenrauch C. Gelling lyotropic liquid crystals with the organogelator 1,3:2,4-dibenzylidene-d-sorbitol part I: phase studies and sol-gel transitions. Langmuir. 2019;35:17132–41.

    Article  CAS  Google Scholar 

  32. Niu L, Bai G, Song J. 1,3:2,4-di-(3,4-dimethyl)benzylidene sorbitol organogels used as phase change materials: solvent effects on structure, leakage and thermal performance. RSC Adv. 2015;5:21733–9.

    Article  CAS  Google Scholar 

  33. Lai W-C, Chang C-W, Hsueh C-Y. Shape-stabilized poly(ethylene glycol) phase change materials with self-assembled network scaffolds for thermal energy storage. Polymer. 2021;213: 123196.

    Article  CAS  Google Scholar 

  34. De Gracia A, Rincón L, Castell A, Jiménez M, Boer D, Medrano M, Cabeza LF. Life cycle assessment of the inclusion of phase change materials (PCM) in experimental buildings. Energy Build. 2010;42:1517–23.

    Article  Google Scholar 

  35. Ahmadi A, Ehyaei MA, Doustgani A, Assad MEH, Hmida A, Jamali DH, Kumar R, Li ZX, Razmjoo A. Recent residential applications of low-temperature solar collector. J Clean Prod. 2021;279: 123549.

    Article  Google Scholar 

  36. Watase M, Nakatani Y, Itagaki H. On the Origin of the Formation and Stability of Physical gels of di-o-benzylidene-d-sorbitol. J Phys Chem B. 1999;103:2366–73.

    Article  CAS  Google Scholar 

  37. Xu T, Chen Q, Zhang Z, Gao X, Huang G. Investigation on the properties of a new type of concrete blocksincorporated with PEG/SiO2 composite phase change material. Build Environ. 2016;104:172–7.

    Article  Google Scholar 

  38. Tang B, Wei H, Zhao D, Zhang S. Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7doping. Sol Energ Mat Sol C. 2017;106:183–9.

    Article  Google Scholar 

  39. Sarı A, Bicer A, Al-Sulaiman FA, Karaipekli A, Tyagi VV. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties. Energy & Buildings. 2018;164:166–75.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ministry of Science and Technology of Taiwan for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chi Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, WC., Fan, RW. Enhanced thermal performance of form-stable phase change materials with organic and inorganic supporting nanofillers. J Therm Anal Calorim 147, 14287–14295 (2022). https://doi.org/10.1007/s10973-022-11775-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11775-w

Keywords

Navigation