Skip to main content
Log in

Evaluating the bioenergy potential of kitchen wastes fermentation residues through pyrolysis kinetics, thermodynamics and Py-GC/MS analysis technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pyrolysis non-isothermal kinetics, thermodynamics and products compositional characteristics of kitchen wastes fermentation residues (KWFR) were investigated to explore the bioenergy potential by thermogravimetric analysis and pyrolysis gas chromatography mass spectrometry (Py-GC/MS) methods. The results showed that pyrolysis process can be divided into four common stages. The kinetics results deduced from FWO, KAS and Popescu methods showed that reaction activation energy (E) was 170.56, 168.98 and 172.10 kJ mol−1 and pre-exponential factor (A) was 1.22E + 17, 5.04E + 10 and 1.80E + 15 min−1, respectively, while the optimal mechanism function was G(α) = [1 − (1 − α)1/3]2(n = 2). The calculated thermodynamic parameters included ΔH (163.77–166.90 kJ mol−1), ΔS (− 62.25–61.28 J mol−1 K−1) and ΔG (145.41–184.02 kJ mol−1). The Py-GC/MS results showed mainly produced nitrogen-containing compounds, acidic alcohol compounds, aldehydes, ketones, esters, benzenes and hydrocarbons. This study highlights KWFR can be considered as an attractive feedstock for bioenergy and bio-based chemicals and meanwhile may help to solve the problem of kitchen wastes digestion tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6

Similar content being viewed by others

References

  1. Liu Y, Xing P, Liu J. Environmental performance evaluation of different municipal solid waste management scenarios in China. Res Conserv Recycl. 2017;125:98–106.

    Article  Google Scholar 

  2. Pham T, Kaushik R, Parshetti G, Mahmood R, Balasubramanian R. Food waste-to-energy conversion technologies: current status and future directions. Waste Manag. 2015;38:399–408.

    Article  CAS  Google Scholar 

  3. Liu W, Dong Z, Sun D, Chen Y, Wang S, Zhu J, Liu C. Bioconversion of kitchen waste into bioflocculant and its pilot-scale application in treating iron mineral processing wastewater. Bioresour Technol. 2019;288:121505.

    Article  CAS  Google Scholar 

  4. Eriksson M, Osowski C, Malefors C, Björkman J, Eriksson E. Quantification of food waste in public catering services-a case study from a Swedish municipality. Waste Manag. 2017;61:415–22.

    Article  Google Scholar 

  5. Pan F, Liu S, Xu Q, Chen X, Cheng J. Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme-producing fungi and Bacillus amyloliquefaciens HM618. Biochem Eng J. 2021;172:108036.

    Article  CAS  Google Scholar 

  6. Xu F, Wang B, Yang D, Ming X, Jiang Y, Hao J, Qiao Y, Tian Y. TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Convers Manag. 2018;175:288–97.

    Article  CAS  Google Scholar 

  7. Banerjee A, Vithusha T, Krishna B, Kumar J, Bhaskar T, Ghosh D. Pyrolysis of de-oiled yeast biomass of Rhodotorula mucilaginosa IIPL32: kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresour Technol. 2021;340:125534.

    Article  CAS  Google Scholar 

  8. Sharma A, Mohanty B. Non-isothermal TG/DTG-FTIR kinetic study for devolatilization of Dalbergia sissoo wood under nitrogen atmosphere. J Therm Anal Calorim. 2020;146:865–79.

    Article  Google Scholar 

  9. Liu J, Huang S, Chen K, Wang T, Mei M, Li J. Preparation of biochar from food waste digestate: pyrolysis behavior and product properties. Bioresour Technol. 2020;302:122841.

    Article  CAS  Google Scholar 

  10. Opatokun S, Strezov V, Kan T. Product based evaluation of pyrolysis of food waste and its digestate. Energy. 2015;92:349–54.

    Article  CAS  Google Scholar 

  11. Suriapparao D, Vinu R. Recovery of renewable carbon resources from the household kitchen waste via char induced microwave pyrolysis. Renew Energy. 2021;179:370–8.

    Article  CAS  Google Scholar 

  12. Striūgas N, Skvorčinskienė R, Paulauskas R, Zakarauskas K, Vorotinskienė L. Evaluation of straw with absorbed glycerol thermal degradation during pyrolysis and combustion by TG-FTIR and TG-GC/MS. Fuel. 2017;204:227–35.

    Article  Google Scholar 

  13. Jiang Y, Zong P, Tian B, Xu F, Tian Y, Qiao Y, Zhang J. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: a study using TG-FTIR and Py-GC/MS. Energy Convers Manag. 2019;179:72–80.

    Article  CAS  Google Scholar 

  14. Wang S, Wang D, Tang Y, Sun Y, Jiang D, Su T. Study of pyrolysis behavior of hydrogen-rich bark coal by TGA and Py-GC/MS. J Anal Appl Pyrolysis. 2017;128:136–42.

    Article  CAS  Google Scholar 

  15. Hu J, Jiang B, Wang J, Qiao Y, Zuo T, Sun Y, Jiang X. Physicochemical characteristics and pyrolysis performance of corn stalk torrefied in aqueous ammonia by microwave heating. Bioresour Technol. 2019;274:83–8.

    Article  CAS  Google Scholar 

  16. Liaw S, Perez V, Zhou S, Rodriguez-Justo O, Garcia-Perez M. Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis. J Anal Appl Pyrolysis. 2014;109:140–51.

    Article  CAS  Google Scholar 

  17. Yan H, Hou F, Zhao H, Wang H, Gao S, Wu M, Yu P, Liu J, Li N, Sun Y, Jiang W, Fan K, He T, Qin S. Pyrolysis kinetics of invasive coastal plant Spartina anglica using thermogravimetric analysis. Energy Sources Part A. 2016;38:2867–75.

    Article  CAS  Google Scholar 

  18. Han Z, Zhuang D, Zhao H, Yan H, Mao G, Yao C, Wang J, Bi Z, Shan G, Pan J, Sun X, Zhao Y, Yang Y. Comparative study on thermal behaviors between micrites and thrombolites using thermogravimetric analysis. J Therm Anal Calorim. 2020;139:1229–42.

    Article  CAS  Google Scholar 

  19. Vyazovkin S, Burnham A, Criado J, Pérez-Maqueda L, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  20. Maia A, Morais L. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour Technol. 2016;204:157–63.

    Article  CAS  Google Scholar 

  21. Kumar M, Shukla S, Upadhyay S, Mishra P. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models. Bioresour Technol. 2020;310:123393.

    Article  CAS  Google Scholar 

  22. Xu Y, Chen B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol. 2013;146:485–93.

    Article  CAS  Google Scholar 

  23. Chen L, Yu Z, Liang J, Liao Y, Ma X. Co-pyrolysis of Chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS. Energy Convers Manag. 2018;177:582–91.

    Article  CAS  Google Scholar 

  24. Giwa A, Xu H, Chang F, Zhang X, Ali N, Yuan J, Wang K. Pyrolysis coupled anaerobic digestion process for food waste and recalcitrant residues: fundamentals, challenges, and considerations. Energy Sci Eng. 2019;7:2250–64.

    Article  CAS  Google Scholar 

  25. Alghashm S, Qian S, Hua Y, Wu J, Zhang H, Chen W, Shen G. Properties of biochar from anaerobically digested food waste and its potential use in phosphorus recovery and soil amendment. Sustainability. 2018;10:4692.

    Article  Google Scholar 

  26. Ahmad M, Mehmood M, Al-Ayed O, Ye G, Luo H, Ibrahim M, Rashid U, Nehdi I, Qadir G. Kinetic analyses and pyrolytic behavior of para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol. 2017;224:708–13.

    Article  CAS  Google Scholar 

  27. Mishra R, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol. 2018;251:63–74.

    Article  CAS  Google Scholar 

  28. Guo K, Wells S, Han F, Arslan Z, Sun H, Zhang J. Trace elements and heavy metals in Asian rice-derived food products. Water Air Soil Pollut. 2017;228:76.

    Article  Google Scholar 

  29. Kim L, Traistaru G, Covaliu C, Pascu L, Cristea I, Serbanescu A, Cernica G. Characterization of different types of biomass wastes using thermogravimetric and ICP-MS analyses. Rev Chim. 2019;70(12):4584–90.

    CAS  Google Scholar 

  30. Jo J, Kim S, Shim J, Lee Y, Yoo Y. Pyrolysis characteristics and kinetics of food wastes. Energies. 2017;10:1191.

    Article  Google Scholar 

  31. Ma Z, Chen D, Gu J, Bao B, Zhang Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers Manag. 2015;89:251–9.

    Article  CAS  Google Scholar 

  32. Monlau F, Francavilla M, Sambusiti C, Antoniou N, Solhy A, Libutti A, Zabaniotou A, Barakat A, Monteleone M. Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management, Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl Energy. 2016;169:652–62.

    Article  CAS  Google Scholar 

  33. Sfakiotakis S, Vamvuka D. Study of co-pyrolysis of olive kernel with waste biomass using TGA/DTG/MS. Thermochim Acta. 2018;670:44–54.

    Article  CAS  Google Scholar 

  34. Genieva S, Gonsalvesh L, Georgieva V, Tavlieva M, Vlaev L. Kinetic analysis and pyrolysis mechanism of raw and impregnated almond shells. Thermochim Acta. 2021;698:178877.

    Article  CAS  Google Scholar 

  35. Wang B, Xu F, Zong P, Zhang J, Tian Y, Qiao Y. Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS. Renew Energy. 2019;132:486–96.

    Article  CAS  Google Scholar 

  36. Ekawa B, Stanford V, Vyazovkin S. Isoconversional kinetics of vaporization of nanoconfined liquids. J Mol Liq. 2021;327:114824.

    Article  CAS  Google Scholar 

  37. Ma Z, Wang J, Yang Y, Zhang Y, Zhao C, Yu Y, Wang S. Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches. J Anal Appl Pyrolysis. 2018;134:12–24.

    Article  CAS  Google Scholar 

  38. Kumar M, Srivastava N, Upadhyay S, Mishra P. Thermal degradation of dry kitchen waste: kinetics and pyrolysis products. Biomass Convers Biorefin. 2021. https://doi.org/10.1007/s13399-021-01309-z.

    Article  Google Scholar 

  39. Vuppaladadiyam A, Zhao M, Memon M, Soomro A, Wei W. Solid waste as a renewable source of energy: a comparative study on thermal and kinetic behavior of three organic solid wastes. Energy Fuel. 2019;33:4378–88.

    Article  CAS  Google Scholar 

  40. Han Z, Zhuang D, Yan H, Zhao H, Sun B, Li D, Sun Y, Hu W, Xuan Q, Chen J, Xiu Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of microbial calcites induced by cyanobacteria Synechocystis sp. PCC6803. J Therm Anal Calorim. 2017;127:1371–9.

    Article  CAS  Google Scholar 

  41. Vikraman V, Boopathi G, Kumar D, Mythili R, Subramanian P. Non-isothermal pyrolytic kinetics of milk dust powder using thermogravimetric analysis. Renew Energy. 2021;180:838–49.

    Article  CAS  Google Scholar 

  42. Biller P, Ross A. Pyrolysis GC–MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Res. 2014;6:91–7.

    Article  Google Scholar 

  43. Chiavari G, Galletti G. Pyrolysis-gas chromatography/mass spectrometry of amino acids. J Anal Appl Pyrolysis. 1992;24:123–37.

    Article  CAS  Google Scholar 

  44. Tsuge S, Matsubara H. High-resolution pyrolysis-gas chromatography of proteins and related materials. J Anal Appl Pyrolysis. 1985;8:49–64.

    Article  CAS  Google Scholar 

  45. Yu Z, Dai M, Huang M, Fang S, Xu J, Lin Y, Ma X. Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: analytical Py-GC/MS study. Renew Energy. 2018;125:465–71.

    Article  CAS  Google Scholar 

  46. Paine J, Pithawalla Y, Naworal J. Carbohydrate pyrolysis mechanisms from isotopic labelling. Part 4. The pyrolysis of D-glucose: the formation of furans. J Anal Appl Pyrolysis. 2008;83:37–63.

    Article  CAS  Google Scholar 

  47. Syarif H, Bakar M, Yang Y, Neeranuch P. Characterisation and Py-GC/MS analysis of Imperata Cylindrica as potential biomass for bio-oil production in Brunei Darussalam. J Anal Appl Pyrolysis. 2018;134:510–9.

    Article  Google Scholar 

  48. Jeon M, Jeon J, Suh D, Park S, Sa Y, Joo S, Parka Y. Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catal Today. 2013;204:170–8.

    Article  CAS  Google Scholar 

  49. Binder J, Raines R. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc. 2009;131:1979–85.

    Article  CAS  Google Scholar 

  50. Lv G, Wu S. Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS. J Anal Appl Pyrolysis. 2012;97:11–8.

    Article  CAS  Google Scholar 

  51. Park H, Park K, Jeon J, Kim J, Ryoo R, Jeong K, Park S, Park Y. Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel. 2012;97:379–84.

    Article  CAS  Google Scholar 

  52. Hao J, Zong P, Tian Y, Zhang J, Qiao Y. Distribution and chemical structure characteristic of the fast thermal-cracking products of Buton oil sand bitumen by Py-GC/TOF-MS and a fluidized bed reactor. Energy Convers Manag. 2019;183:485–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support provided by National Natural Science Foundation of China(42072136, 42106144); and Shandong Key Research and Development Program Major Science and technology innovation engineering projects (2019JZZY020808), and Natural Science Foundation of Shandong Province (ZR2019MD027, ZR2020QD089, ZR2020MC041, ZR2021QE125).

Author information

Authors and Affiliations

Authors

Contributions

HZ, HZ and HY contributed to conceptualization, investigation, methodology, data curation, validation, formal analysis, funding acquisition, writing—original draft and writing—review and editing. MS, WC and BL contributed to data curation, investigation and software. CD, HZ and JJ contributed to resources. SQ and ZH contributed to supervision.

Corresponding authors

Correspondence to Hui Zhao or Huaxiao Yan.

Ethics declarations

Conflict of interest

The authors declared that there are no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, H., Sun, M. et al. Evaluating the bioenergy potential of kitchen wastes fermentation residues through pyrolysis kinetics, thermodynamics and Py-GC/MS analysis technique. J Therm Anal Calorim 148, 995–1010 (2023). https://doi.org/10.1007/s10973-022-11711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11711-y

Keywords

Navigation