Skip to main content
Log in

Modeling nanostructure thermal conductivity: effect of phonon distribution function

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the lattice thermal conductivity of nanostructure material is demonstrated using the non-equilibrium phonon distribution function to solve the Boltzmann transport equation in the relaxation time approximation. This model is compared with the experimental data of silicon nanowires (SiNWs) for a wide diameter and temperature range (20–320 K). Phonon scattering is assumed to be by sample boundaries, impurities and other phonons via Normal and Umklapp processes. The predicted lattice thermal conductivity (LTC) values demonstrate sensible concurrence with experimental measurements. The present analysis can clarify the experimental results on the lattice thermal conductivity of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Lattice constant

\(K\) :

Lattice thermal conductivity

\(\Delta K\) :

Correction term

\(K_{{\text{B}}}\) :

Boltzmann constant

\(g(\omega )\) :

Density of state

\(C_{{\text{v}}}\) :

Specific heat

\(\overline{k}\) :

Phonon wave vector

\(\hbar\) :

Planck’s constant divided by \(2\pi\)

\(\omega\) :

Phonon angular frequency

\(x\) :

Dimensionless parameter

\(v_{{\text{s}}}\) :

Phase velocity

\(v\) :

Group velocity

\(V_{ \circ }\) :

Volume of the specimen

\(\theta_{{\text{D}}}\) :

Debye temperature

\(\tau_{{\text{C}}}\) :

Combined scattering relaxation rates

\(\tau_{{\text{N}}}\) :

Relaxation rate of normal process

\(\tau_{{\text{U}}}\) :

Relaxation rate of Umklapp process

\(\overline{\lambda }\) :

Arbitrary constant vector

\(N(t)\) :

Non-equilibrium distribution function

\(N_{ \circ }^{{}}\) :

Equilibrium distribution function

T :

Lattice temperature

\(\nabla T\) :

Temperature gradient

\(\tau_{{\text{B}}}^{ - 1}\) :

Boundary scattering relaxation rate

\(\tau_{{{\text{pt}}}}^{ - 1}\) :

Point defects scattering relaxation rate

\(\tau_{{\text{N}}}^{ - 1}\) :

Three phonon normal processes

\(\tau_{{\text{U}}}^{ - 1}\) :

Three phonon Umklapp processes

References

  1. Awad AH, Dubey KS. Analysis of the lattice thermal conductivity and phonon–phonon scattering relaxation rate: application to Mg2Ge and Mg2Si. J Therm Anal. 1982;24:233–60.

    Article  CAS  Google Scholar 

  2. Awad AH. Phonon conductivity of InSb in the temperature range 2–800 K. Acta Phys Hungarica. 1988;63(3–4):331–40.

    Article  CAS  Google Scholar 

  3. Olson JR, Pohl RO, Vandersande JW, Zoltan A, Anthony TR, Banholzer WF. Thermal conductivity of diamond between 170 and 1200 and the isotope effect. Phys Rev B. 1993;47:14850–60.

    Article  CAS  Google Scholar 

  4. Wei L, Kuo PK, Thomas RL, Anthony TR, Banholzer WF. Thermal conductivity of isotopically modified single crystal diamond. Phys Rev Let. 1993;70:3764–7.

    Article  CAS  Google Scholar 

  5. Awad AH. Debye temperature dependent lattice thermal conductivity of silicon. J Therm Anal Calor. 1999;55:187–96.

    Article  CAS  Google Scholar 

  6. Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A. Thermal conductivity of individual silicon nanowires. Appl Phys Lett. 2003;83(14):2934–44.

    Article  CAS  Google Scholar 

  7. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature. 2008;451:163–7.

    Article  CAS  Google Scholar 

  8. Boukai AI, Bunimovich Y, Kheli JT, Yu JK, Goddard WA, Heath JR. Silicon nanowires as efficient thermoelectric materials. Nature. 2008;451:168–71.

    Article  CAS  Google Scholar 

  9. Chen R, Hochbaum AI, Murphy P, Moore J, Yang P, Majumdar A. Thermal conductance of thin silicon nanowires. Phys Rev Lett. 2008;101:105501–4.

    Article  Google Scholar 

  10. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructure: synthesis, characterization and application. Adv Mater. 2008;15:353–89.

    Article  Google Scholar 

  11. Sirbuly DJ, Law M, Yan H, Yang P. Semiconductor nanowires for subwavelength photonics integration. J Phys Chem B. 2005;109(32):15190–213.

    Article  CAS  Google Scholar 

  12. Sun X, Zhang Z, Dresselhaus MS. Theoretical modeling of thermoelectricity in Bi nanowires. Appl Phys Lett. 1999;74:4005–7.

    Article  CAS  Google Scholar 

  13. Nakayama Y, Pauzauskie PJ, Radenovic A, Onorato RM, Saykally RJ, Liphardt J, Yang P. Tunable nanowire nonlinear optical probe. Nature. 2007;447:1098–101.

    Article  CAS  Google Scholar 

  14. Donadio D, Galli G. Atomistic simulations of heat transport in silicon nanowires. Phys Rev Lett. 2009;102:195901–9.

    Article  Google Scholar 

  15. Markussen T, Jauho AP, Brandbyge M. Surface-decorated silicon nanowires: a route to high-ZT thermoelectric. Phys Rev Lett. 2009;103:055502–12.

    Article  Google Scholar 

  16. Li DY. Thermal transport in individual nanowire and nanotube. PhD thesis (Berkeley: Univ. of California). 2002.

  17. Li D, Wu Y, Fan R, Yang P, Majumdara A. Thermal conductivity of Si/SiGe superlattice nanowires. Appl Phys Lett. 2003;83(15):3186–8.

    Article  CAS  Google Scholar 

  18. Mingo N, Yang L, Li D, Majumdar A. Predicting the thermal conductivity of Si and Ge nanowires. Nano Lett. 2003;3:1713–6.

    Article  CAS  Google Scholar 

  19. Mingo N. Calculation of nanowire thermal conductivity using complete phonon dispersion relations. Phys Rev B. 2003;68:113308–11.

    Article  Google Scholar 

  20. Huang WQ, Chen KQ, Shuai Z, Wang L, Hu W. Lattice thermal conductivity in a hollow silicon nanowire. Int J Modern Phys B. 2005;19(6):1017–27.

    Article  CAS  Google Scholar 

  21. Huang MJ, Chang TM, Chong WY, Liu CK, Yu CK. A new lattice thermal semiconductor. Int J Heat Mass Transf. 2007;50:67–74.

    Article  Google Scholar 

  22. Martin P, Aksamija Z, Pop E, Ravaioli U. Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys Rev Lett. 2009;102:125503–4.

    Article  Google Scholar 

  23. Omar MS, Taha HT. Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire. Sadhana. 2010;35(2):177–93.

    Article  CAS  Google Scholar 

  24. Kazan M, Guisbiers G, Pereira S, Correia MR, Masri P, Bruyant A, Volz S, Royer P. Thermal conductivity of silicon bulk and nanowires: effects of isotopic composition, phonon confinement, and surface roughness. J Appl Phys. 2010;107:083503–14.

    Article  Google Scholar 

  25. Awad AH. Modeling nanostructure lattice thermal conductivity: the dispersion relation role. J Therm Anal Calor. 2015;119(2):1459–67.

    Article  CAS  Google Scholar 

  26. Callaway J. Model for lattice thermal conductivity at low temperatures. Phys Rev. 1959;113(4):1046–51.

    Article  CAS  Google Scholar 

  27. Holland MG. Analysis of lattice thermal conductivity. Phys Rev. 1963;132:2461–71.

    Article  CAS  Google Scholar 

  28. Asen-Palmer M, Bartkowski K, Gmelin E, Carona M, Zhernov AP, Inyushkin AV, Taldenkov A, Ozhogin VI, Itoh KM, Haller EE. Thermal conductivity of germanium crystals with different isotopic compositions. Phys Rev B. 1997;56:9431–47.

    Article  CAS  Google Scholar 

  29. Morelli DT, Heremans JP, Slack JA. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Phys Rev B. 2002;66:195304–12.

    Article  Google Scholar 

  30. Awad AH. Hole-phonon scattering and thermal conductivity of p-type InSb from 2 to 100 K. J Therm Anal Calor. 2001;63:597–608.

    Article  CAS  Google Scholar 

  31. Awad AH. Lattice thermal conductivity modeling of a diatomic nanoscale material. Nanosci Nanotechnol Asia. 2020;10(5):602–9.

    Article  CAS  Google Scholar 

  32. Ashcroft NW, Mermin ND. Solid state physics, Holt-Sauders Int. Ed. 1981. p. 243.

  33. Casimir HBG. Note on the conduction of heat in crystals. Physica. 1938;5(6):495–500.

    Article  Google Scholar 

  34. Klemens PG. Solid state physics 7 edited by Seitz F and Turnbull D. New York: Academic Press; 1958.

    Google Scholar 

  35. Herring C. Role of low energy phonons in thermal conduction. Phys Rev. 1954;95:954–60.

    Article  CAS  Google Scholar 

  36. Tutuncu HM, Srivastava GP. Phonons in zinc-blende and wurtzite phases of GaN, AlN, and BN with the adiabatic bond-charge model. Phys Rev B. 2000;62:5028–35.

    Article  CAS  Google Scholar 

  37. Awad AH, Shargi SN. Role of the Debye temperature in the lattice thermal conductivity of silicon. J Therm Anal Calor. 1991;37:277–84.

    Article  CAS  Google Scholar 

  38. Awad AH. Contribution to the lattice thermal conductivity due to the three phonon normal processes in the frame of the callaway integral. Acta Phys Hung. 1990;67(1–2):211–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Awad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, A.H. Modeling nanostructure thermal conductivity: effect of phonon distribution function. J Therm Anal Calorim 147, 14071–14078 (2022). https://doi.org/10.1007/s10973-022-11693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11693-x

Keywords

Navigation