Skip to main content

Advertisement

Log in

Thermochemistry of fusion of benzocaine and S-naproxen between 298.15 K and Tm studied by solution and fast scanning calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermodynamic parameters of fusion define the solubility and stability of the crystalline materials and thus are important in the field of pharmaceutics. However, determining these parameters in practice by the common approaches, such as differential scanning calorimetry, is often hindered by the evaporation and degradation at high temperatures. Thus, the development of the independent approaches for determination of thermodynamic parameters of melting is important from both fundamental and practical standpoints. In this work two active pharmaceutical ingredients, S-naproxen and benzocaine, were studied by differential scanning calorimetry, fast scanning calorimetry, and solution calorimetry. Solution calorimetry was used to independently find the fusion enthalpies at 298.15 K. Fast scanning calorimetry was used to access the heat capacities of the supercooled liquid states. The literature data on the fusion enthalpies and heat capacities of the solid and liquid were collected and critically analyzed, considering the performed measurements. As a result, a consistent set of the fusion enthalpies and solid and liquid heat capacities between 298.15 K and melting point of S-naproxen and benzocaine was derived. The viability of the solution calorimetry approach was verified for polyfunctional organic molecules, providing a basis for the further use of this approach in the field of the thermochemistry of the pharmaceutically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouillot B, Teychené S, Biscans B. An evaluation of thermodynamic models for the prediction of drug and drug-like molecule solubility in organic solvents. Fluid Phase Equilib. 2011;309:36–52.

    Article  CAS  Google Scholar 

  2. Kons A, Mishnev A, Mukhametzyanov TA, Buzyurov AV, Lapuk SE, Berzins A. Hexamorphism of dantrolene: insight into the crystal Structures, stability, and phase transformations. Cryst Growth Des. 2021;21:1190–201.

    Article  CAS  Google Scholar 

  3. Held C, Brinkmann J, Schröder A-D, Yagofarov MI, Verevkin SP. Solubility predictions of acetanilide derivatives in water: combining thermochemistry and thermodynamic modeling. Fluid Phase Equilib. 2018;455:43–53.

    Article  CAS  Google Scholar 

  4. Lopes MS, Catelani TA, Nascimento AL, Garcia JS, Trevisan MG. Ketoconazole: compatibility with pharmaceutical excipients using DSC and TG techniques. J Therm Anal Calorim. 2020;141:1371–8.

    Article  CAS  Google Scholar 

  5. Blokhina S, Sharapova A, Ol’khovich M, Perlovich G. Thermodynamic study of aceclofenac solubility, distribution and sublimation. J Chem Thermodyn. 2019;137:13–21.

    Article  CAS  Google Scholar 

  6. Boycov DE, Manin AN, Drozd KV, Churakov AV, Perlovich GL. Thermal method usage features for multicomponent crystal screening. CrystEngComm. 2022;24:2280–90.

    Article  CAS  Google Scholar 

  7. Gui Y, McCann EC, Yao X, Li Y, Jones KJ, Yu L. Amorphous drug–polymer salt with high stability under tropical conditions and fast dissolution: the case of clofazimine and poly (acrylic acid). Mol Pharm. 2021;18:1364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lapuk S, Mukhametzyanov T, Schick C, Gerasimov A. Crystallization kinetics and glass-forming ability of rapidly crystallizing drugs studied by Fast Scanning Calorimetry. Int J Pharm. 2021;599:120427.

    Article  CAS  PubMed  Google Scholar 

  9. Acree W, Chickos JS. Phase Transition enthalpy measurements of organic and organometallic compounds and ionic liquids. Sublimation, vaporization, and fusion enthalpies from 1880 to 2015. Part 2. C11–C192. J Phys Chem Ref Data. 2017;46:013104.

    Article  Google Scholar 

  10. Do HT, Chua YZ, Kumar A, Pabsch D, Hallermann M, Zaitsau D, Schick C, Held C. Melting properties of amino acids and their solubility in water. RSC Adv. 2020;10:44205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perlovich G, Hansen LK, Bauer-Brandl A. The polymorphism of glycine. Thermochemical and structural aspects. J Therm Anal Calorim. 2001;66:699–715.

    Article  CAS  Google Scholar 

  12. Surov AO, Voronin AP, Drozd KV, Gruzdev MS, Perlovich GL, Prashanth J, Balasubramanian S. Polymorphic forms of antiandrogenic drug nilutamide: structural and thermodynamic aspects. Phys Chem Chem Phys. 2021;23:9695–708.

    Article  CAS  PubMed  Google Scholar 

  13. Yagofarov MI, Nagrimanov RN, Solomonov BN. New aspects in the thermochemistry of solid-liquid phase transitions of organic non-electrolytes. J Mol Liq. 2018;256:58–66.

    Article  CAS  Google Scholar 

  14. Yagofarov MI, Nagrimanov RN, Ziganshin MA, Solomonov BN. New aspects of relationship between the enthalpies of fusion of aromatic compounds at the melting temperature and the enthalpies of solution in benzene at 298.15 K. Part II. J Chem Thermodyn. 2018;120:21–6.

    Article  CAS  Google Scholar 

  15. Yagofarov MI, Nagrimanov RN, Ziganshin MA, Solomonov BN. New aspects of relationship between the enthalpies of fusion of aromatic compounds at the melting temperatures and the enthalpies of solution in benzene at 298.15 K. Part I. J Chem Thermodyn. 2018;116:152–8.

    Article  CAS  Google Scholar 

  16. Yagofarov MI, Lapuk SE, Mukhametzyanov TA, Ziganshin MA, Valiakhmetov TF, Solomonov BN. The fusion thermochemistry of self-associated aromatic compounds at 298.15 K studied by solution calorimetry. J Chem Thermodyn. 2019;137:43–7.

    Article  CAS  Google Scholar 

  17. Bolmatenkov DN, Yagofarov MI, Sokolov AA, Ziganshin MA, Solomonov BN. The heat capacities and fusion thermochemistry of sugar alcohols between 298.15 K and Tm: the study of D-sorbitol, D-mannitol and myo-inositol. J Mol Liq. 2021;330:115545.

    Article  CAS  Google Scholar 

  18. Yagofarov MI, Lapuk SE, Mukhametzyanov TA, Ziganshin MA, Schick C, Solomonov BN. Application of fast scanning calorimetry to the fusion thermochemistry of low-molecular-weight organic compounds: fast-crystallizing m-terphenyl heat capacities in a deeply supercooled liquid state. Thermochim Acta. 2018;668:96–102.

    Article  CAS  Google Scholar 

  19. Bolmatenkov DN, Yagofarov MI, Mukhametzyanov TA, Ziganshin MA, Solomonov BN. The fusion thermochemistry of rubrene and 9,10-diphenylanthracene between 298 and 650 K: fast scanning and solution calorimetry. Thermochim Acta. 2020;693:178778.

    Article  CAS  Google Scholar 

  20. Bolmatenkov DN, Yagofarov MI, Mukhametzyanov TA, Ziganshin MA, Schick C, Solomonov BN. A new method for heat capacity determination in supercooled liquid state using fast scanning calorimetry: thermochemical study of 9, 9′-bifluorenyl. Thermochim Acta. 2020;694:178805.

    Article  CAS  Google Scholar 

  21. Yagofarov MI, Lapuk SE, Mukhametzyanov TA, Ziganshin MA, Schick C, Solomonov BN. Thermochemical properties of 1, 2, 3, 4-tetraphenylnaphthalene and 1, 3, 5-triphenylbenzene in crystalline and liquid states studied by solution and fast scanning calorimetry. J Mol Liq. 2019;278:394–400.

    Article  CAS  Google Scholar 

  22. Chua YZ, Do HT, Schick C, Zaitsau D, Held C. New experimental melting properties as access for predicting amino-acid solubility. RSC Adv. 2018;8:6365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yagofarov MI, Solomonov BN. Interpolation of the temperature dependence of the fusion enthalpy of aromatic compounds between 298.15 K and the melting temperature. Int J Thermophys. 2022;43:90.

    Article  CAS  Google Scholar 

  24. Solomonov BN, Yagofarov MI. An approach for the calculation of vaporization enthalpies of aromatic and heteroaromatic compounds at 298.15 K applicable to supercooled liquids. J Mol Liq. 2020;319:114330.

    Article  CAS  Google Scholar 

  25. Armarego WL. Purification of laboratory chemicals: Butterworth-Heinemann. Amsterdam: Elsevier; 2017.

    Google Scholar 

  26. Solomonov BN, Varfolomeev MA, Nagrimanov RN, Novikov VB, Zaitsau DH, Verevkin SP. Solution calorimetry as a complementary tool for the determination of enthalpies of vaporization and sublimation of low volatile compounds at 298.15 K. Thermochim Acta. 2014;589:164–73.

    Article  CAS  Google Scholar 

  27. Štejfa V, Pokorný V, Mathers A, Růžička K, Fulem M. Heat capacities of selected active pharmaceutical ingredients. J Chem Thermodyn. 2021;163:106585.

    Article  Google Scholar 

  28. Ledo JM, Flores H, Freitas VL, Solano-Altamirano J, Hernández-Pérez JM, Camarillo EA, Ramos F, da Silva MDR. Benzocaine: a comprehensive thermochemical study. J Chem Thermodyn. 2020;147:106119.

    Article  CAS  Google Scholar 

  29. Song J-S, Sohn Y-T. Crystal forms of Naproxen. Arch Pharm Res. 2011;34:87.

    Article  PubMed  Google Scholar 

  30. Chan E, Welberry T, Goossens D, Heerdegen A, Beasley A, Chupas P. Single-crystal diffuse scattering studies on polymorphs of molecular crystals. I. The room-temperature polymorphs of the drug benzocaine. Acta Cryst B Struct Sci. 2009;65:382–92.

    Article  CAS  Google Scholar 

  31. Cheuk D, Svärd M, Rasmuson ÅC. Thermodynamics of the enantiotropic pharmaceutical compound Benzocaine and solubility in pure organic solvents. J Pharm Sci. 2020;109:3370–7.

    Article  CAS  PubMed  Google Scholar 

  32. Gautschi N, Van Hoogevest P, Kuentz M. Amorphous drug dispersions with mono-and diacyl lecithin: on molecular categorization of their feasibility and UV dissolution imaging. Int J Pharm. 2015;491:218–30.

    Article  CAS  PubMed  Google Scholar 

  33. Saini MK, Murthy SSN. Study of glass transition phenomena in the supercooled liquid phase of methocarbamol, acetaminophen and mephenesin. Thermochim Acta. 2014;575:195–205.

    Article  CAS  Google Scholar 

  34. Elkordy AA, Ashoore A, Essa EA. Complexation of Naproxen with beta-cyclodextrin with and without poloxamer 407 to enhance drug dissolution. J Appl Pharm. 2012;4:178.

    Article  Google Scholar 

  35. Maxwell R, Chickos J. An examination of the thermodynamics of fusion, vaporization, and sublimation of Ibuprofen and Naproxen by correlation gas chromatography. J Pharm Sci. 2012;101:805–14.

    Article  CAS  PubMed  Google Scholar 

  36. Braun DE, Ardid-Candel M, D’Oria E, Karamertzanis PG, Arlin J-B, Florence AJ, Jones AG, Price SL. Racemic Naproxen: a multidisciplinary structural and thermodynamic comparison with the enantiopure form. Cryst Growth Des. 2011;11:5659–69.

    Article  CAS  Google Scholar 

  37. Castro RAE, Ribeiro JDB, Maria TMR, Ramos Silva M, Yuste-Vivas C, Canotilho J, Eusébio MES. Naproxen cocrystals with pyridinecarboxamide isomers. Cryst Growth Des. 2011;11:5396–404.

    Article  CAS  Google Scholar 

  38. Zhou CR, Shi CR, Wang H-F, Jiang D-G. Gaoxiao Huaxue Gongcheng Xuebao. 2011;25:442.

    CAS  Google Scholar 

  39. Gashi Z, Censi R, Malaj L, Gobetto R, Mozzicafreddo M, Angeletti M, Masic A, Di Martino P. Differences in the interaction between aryl propionic acid derivatives and poly(vinylpyrrolidone) K30: a multi-methodological approach. J Pharm Sci. 2009;98:4216–28.

    Article  CAS  PubMed  Google Scholar 

  40. Vippagunta SR, Wang Z, Hornung S, Krill SL. Factors affecting the formation of eutectic solid dispersions and their dissolution behavior. J Pharm Sci. 2007;96:294–304.

    Article  CAS  PubMed  Google Scholar 

  41. Wassvik CM, Holmén AG, Bergström CAS, Zamora I, Artursson P. Contribution of solid-state properties to the aqueous solubility of drugs. European J Pharm Sci. 2006;29:294–305.

    Article  CAS  Google Scholar 

  42. Mura P, Bettinetti GP, Cirri M, Maestrelli F, Sorrenti M, Catenacci L. Solid-state characterization and dissolution properties of Naproxen–Arginine–Hydroxypropyl-β-cyclodextrin ternary system. Eur J Pharm Biopharm. 2005;59:99–106.

    Article  CAS  PubMed  Google Scholar 

  43. Mura P, Gratteri P, Faucci MT. Compatibility studies of multicomponent tablet formulations DSC and experimental mixture design. J Therm Anal Calorim. 2002;68:541–51.

    Article  CAS  Google Scholar 

  44. Sorrenti M, Negri A, Bettinetti GP. DSC study of crystallinity changes of Naproxen in ground mixtures with linear maltooligomers. J Therm Anal Calorim. 1998;51:993–1000.

    Article  CAS  Google Scholar 

  45. Bustamante P, Peña MA, Barra J. Partial-solubility parameters of Naproxen and sodium diclofenac. J Pharm Pharmacol. 2011;50:975–82.

    Article  Google Scholar 

  46. Neau SH, Bhandarkar SV, Hellmuth EW. Differential molar heat capacities to test ideal solubility estimations. Pharm Res. 1997;14:601–5.

    Article  CAS  PubMed  Google Scholar 

  47. Weber H, Meyer-Trümpener K. Ester des Naproxens als potentielle Prodrugs zur Hautpenetration, 1. Mitt.: synthese und physikochemische Eigenschaften. Arch Pharm. 1994;327:337–45.

    Article  CAS  Google Scholar 

  48. Claramonte MDC, Vialard AP, Vilchez FG. An application of regular solution theory in the study of the solubility of naproxen in some solvents used in topical preparations. Int J Pharm. 1993;94:23–30.

    Article  CAS  Google Scholar 

  49. Gana I, Barrio M, Do B, Tamarit J-L, Céolin R, Rietveld IB. Benzocaine polymorphism: pressure–temperature phase diagram involving forms II and III. Int J Pharm. 2013;456:480–8.

    Article  CAS  PubMed  Google Scholar 

  50. Fulias A, Vlase G, Grigorie C, Ledeţi I, Albu P, Bilanin M, Vlase T. Thermal behaviour studies of procaine and benzocaine. J Therm Anal Calorim. 2013;113:265–71.

    Article  CAS  Google Scholar 

  51. Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99:3787–06.

    Article  CAS  PubMed  Google Scholar 

  52. Miyako Y, Khalef N, Matsuzaki K, Pinal R. Solubility enhancement of hydrophobic compounds by cosolvents: role of solute hydrophobicity on the solubilization effect. Int J Pharm. 2010;393:48–54.

    Article  CAS  PubMed  Google Scholar 

  53. Wassvik CM, Holmén AG, Draheim R, Artursson P, Bergström CAS. Molecular characteristics for solid-state limited solubility. J Med Chem. 2008;51:3035–9.

    Article  CAS  PubMed  Google Scholar 

  54. Sturz L, Witusiewicz VT, Hecht U, Rex S. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth. J Cryst Growth. 2004;270:273–82.

    Article  CAS  Google Scholar 

  55. Yamamoto K, Kitamura H, Momota M, Narita K. Observation of the melting process for ethyl p-aminobenzoate doped with eutectic mixture. Thermochim Acta. 1995;267:313–22.

    Article  CAS  Google Scholar 

  56. Neau SH, Flynn GL. Solid and liquid heat capacities of n-alkyl para-aminobenzoates near the melting point. Pharm Res. 1990;7:1157–62.

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt AC. Structural characteristics and crystal polymorphism of three local anaesthetic bases: crystal polymorphism of local anaesthetic drugs: part VII. Int J Pharm. 2005;298:186–97.

    Article  CAS  PubMed  Google Scholar 

  58. Peña MA, Bustamante P, Escalera B, Reíllo A, Bosque-Sendra JM. Solubility and phase separation of benzocaine and salicylic acid in 1,4-dioxane–water mixtures at several temperatures. J Pharm Biomed Anal. 2004;36:571–8.

    Article  PubMed  Google Scholar 

  59. Manzo RH, Ahumada AA. Effects of solvent medium on solubility. V: enthalpic and entropic contributions to the free energy changes of Di-substituted Benzene derivatives in ethanol: water and ethanol: cyclohexane mixtures. J Pharm Sci. 1990;79:1109–15.

    Article  CAS  PubMed  Google Scholar 

  60. Yalkowsky SH, Flynn GL, Slunick TG. Importance of chain length on physicochemical and crystalline properties of organic homologs. J Pharm Sci. 1972;61:852–7.

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz PA, Paruta AN. Solution thermodynamics of alkyl p-aminobenzoates. J Pharm Sci. 1976;65:252–7.

    Article  CAS  PubMed  Google Scholar 

  62. Buchholz H, Emel’yanenko VN, Lorenz H, Verevkin SP. An Examination of the phase transition thermodynamics of (S)-and (RS)-Naproxen as a basis for the design of enantioselective crystallization processes. J Pharm Sci. 2016;105:1676–83.

    Article  CAS  PubMed  Google Scholar 

  63. Solomonov BN, Yagofarov MI, Nagrimanov RN. Additivity of vaporization enthalpy: group and molecular contributions exemplified by alkylaromatic compounds and their derivatives. J Mol Liq. 2021;342:117472.

    Article  CAS  Google Scholar 

  64. Solomonov BN, Novikov VB, Varfolomeev MA, Mileshko NM. A new method for the extraction of specific interaction enthalpy from the enthalpy of solvation. J Phys Org Chem. 2005;18:49–61.

    Article  CAS  Google Scholar 

  65. King MD, Buchanan WD, Korter TM. Application of London-type dispersion corrections to the solid-state density functional theory simulation of the terahertz spectra of crystalline pharmaceuticals. Phys Chem Chem Phys. 2011;13:4250–9.

    Article  CAS  PubMed  Google Scholar 

  66. Yagofarov MI, Nagrimanov RN, Solomonov BN. Thermochemistry of phase transitions of aromatic amines: estimation of the sublimation enthalpy at 298.15 K through the fusion enthalpy. J Chem Thermodyn. 2017;113:301–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation, project No 22-43-04412.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Investigation, Manuscript–writing original draft Mikhail I. Yagofarov; Investigation, Andrey A. Sokolov; Manuscrip–review and editing, Visualization, Timur A. Mukhametzyanov; Investigation, Marat A. Ziganshin; Conceptualization, Verification, B.S.

Corresponding author

Correspondence to Mikhail I. Yagofarov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagofarov, M.I., Sokolov, A.A., Ziganshin, M.A. et al. Thermochemistry of fusion of benzocaine and S-naproxen between 298.15 K and Tm studied by solution and fast scanning calorimetry. J Therm Anal Calorim 148, 2457–2466 (2023). https://doi.org/10.1007/s10973-022-11676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11676-y

Keywords

Navigation