Skip to main content
Log in

Interpolation of the Temperature Dependence of the Fusion Enthalpy of Aromatic Compounds Between 298.15 K and the Melting Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Knowledge of the fusion enthalpy as a function of temperature is necessary when performing rigorous thermodynamic calculations involving crystal-liquid transition. The fusion enthalpy can be measured directly only at the melting point (Tm). Derivation of its temperature dependence according to Kirchhoff’s law of Thermochemistry requires measuring the heat capacities of liquid and solid in a temperature range of interest, which is obstructed by fast crystallization of the liquids below the melting temperature. Another option is an extrapolation of the temperature dependence of the melt heat capacity. Its precise measurement in a wide range demands remarkable efforts, especially in the case of high-melting and thermally unstable compounds. In this work, we showed that the fusion enthalpy between 298.15 K and Tm can be estimated using two relatively simple experiments: solution calorimetry and conventional fusion enthalpy measurement at Tm. The fusion enthalpies interpolated as a linear function of temperature were compared with the values derived according to Kirchhoff’s law of Thermochemistry. An agreement within 1–2 kJ·mol−1 was observed for the vast majority of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C. Held, J. Brinkmann, A.-D. Schröder, M.I. Yagofarov, S.P. Verevkin, Fluid Phase Equilib. 455, 43 (2018)

    Google Scholar 

  2. Y.Z. Chua, H.T. Do, C. Schick, D. Zaitsau, C. Held, RSC Adv. 8, 6365 (2018)

    ADS  Google Scholar 

  3. J.D. Hoffman, J. Chem. Phys. 29, 1192 (1958)

    ADS  Google Scholar 

  4. A. Rojas, E. Orozco, Thermochim. Acta 405, 93 (2003)

    Google Scholar 

  5. J.S. Chickos, S. Hosseini, D.G. Hesse, J.F. Liebman, Struct. Chem. 4, 271 (1993)

    Google Scholar 

  6. Y. Kong, J. Hay, Eur. Polymer J. 39, 1721 (2003)

    Google Scholar 

  7. Y. Kong, J. Hay, Polymer 43, 3873 (2002)

    Google Scholar 

  8. J.R. Donnelly, L.A. Drewes, R.L. Johnson, W.D. Munslow, K.K. Knapp, G.W. Sovocool, Thermochim. Acta 167, 155 (1990)

    Google Scholar 

  9. J.P. McCullough, G. Waddington, Anal. Chim. Acta 17, 80 (1957)

    Google Scholar 

  10. S.H. Neau, S.V. Bhandarkar, E.W. Hellmuth, Pharm. Res. 14, 601 (1997)

    Google Scholar 

  11. H. Hojjati, S. Rohani, Org. Proc. Res. Dev. 10, 1110 (2006)

    Google Scholar 

  12. C. Huang, Z. Chen, Y. Gui, C. Shi, G.G. Zhang, L. Yu, J. Chem. Phys. 149, 054503 (2018)

    ADS  Google Scholar 

  13. M.I. Yagofarov, S.E. Lapuk, T.A. Mukhametzyanov, M.A. Ziganshin, C. Schick, B.N. Solomonov, Thermochim. Acta 668, 96 (2018)

    Google Scholar 

  14. D.N. Bolmatenkov, M.I. Yagofarov, T.A. Mukhametzyanov, M.A. Ziganshin, C. Schick, B.N. Solomonov, Thermochim. Acta, 178805 (2020)

  15. A. Abdelaziz, D. Zaitsau, T. Mukhametzyanov, B. Solomonov, P. Cebe, S. Verevkin, C. Schick, Thermochim. Acta 657, 47 (2017)

    Google Scholar 

  16. P. Cebe, B.P. Partlow, D.L. Kaplan, A. Wurm, E. Zhuravlev, C. Schick, Thermochim. Acta 615, 8 (2015)

    Google Scholar 

  17. H.T. Do, Y.Z. Chua, A. Kumar, D. Pabsch, M. Hallermann, D. Zaitsau, C. Schick, C. Held, RSC Adv. 10, 44205 (2020)

    ADS  Google Scholar 

  18. D.N. Bolmatenkov, M.I. Yagofarov, T.A. Mukhametzyanov, M.A. Ziganshin, B.N. Solomonov, Thermochim. Acta 693, 178778 (2020)

    Google Scholar 

  19. T. Mahnel, V. Štejfa, M. Fulem, K. Růžička, Fluid Phase Equilib. 434, 74 (2017)

    Google Scholar 

  20. M. Fulem, V. Laštovka, M. Straka, K. Růžička, J.M. Shaw, J. Chem. Eng. Data 53, 2175 (2008). https://doi.org/10.1021/je800382b

    Article  Google Scholar 

  21. P. Goursot, H.L. Girdhar, E.F. Westrum Jr., J. Phys. Chem. 74, 2538 (1970)

    Google Scholar 

  22. N. Durupt, A. Aoulmi, M. Bouroukba, M. Rogalski, Thermochim. Acta 260, 87 (1995)

    Google Scholar 

  23. S.S. Chang, J. Chem. Phys. 79, 6229 (1983)

    ADS  Google Scholar 

  24. Y. Grosu, L. González-Fernández, U. Nithiyanantham, A. Faik, Energies 12, 3765 (2019)

    Google Scholar 

  25. U. Domanska, D. Wyrzykowska-Stankiewicz, Thermochim. Acta 179, 265 (1991)

    Google Scholar 

  26. M.I. Yagofarov, R.N. Nagrimanov, B.N. Solomonov, J. Mol. Liq. 256, 58 (2018)

    Google Scholar 

  27. M.I. Yagofarov, R.N. Nagrimanov, M.A. Ziganshin, B.N. Solomonov, J. Chem. Thermodyn. 120, 21 (2018)

    Google Scholar 

  28. M.I. Yagofarov, R.N. Nagrimanov, M.A. Ziganshin, B.N. Solomonov, J. Chem. Thermodyn. 116, 152 (2018)

    Google Scholar 

  29. B.N. Solomonov, M.I. Yagofarov, J. Mol. Liq. 319, 114330 (2020)

    Google Scholar 

  30. M.I. Yagofarov, S.E. Lapuk, T.A. Mukhametzyanov, M.A. Ziganshin, T.F. Valiakhmetov, B.N. Solomonov, J. Chem. Thermodyn. 137, 43 (2019)

    Google Scholar 

  31. B.N. Solomonov, M.I. Yagofarov, R.N. Nagrimanov, J. Mol. Liq. 342, 117472 (2021)

    Google Scholar 

  32. W.-K. Wong, E.F. Westrum Jr., Mol. Cryst. Liq. Cryst. 61, 207 (1980)

    Google Scholar 

  33. R.D. Chirico, S. Knipmeyer, W. Steele, J. Chem. Thermodyn. 34(11), 1885 (2002)

    Google Scholar 

  34. M. Hanaya, T. Hikima, M. Hatase, M. Oguni, J. Chem. Thermodyn. 34, 1173 (2002)

    Google Scholar 

  35. C. De Kruif, J. Van Miltenburg, J. Blok, J. Chem. Thermodyn. 15, 129 (1983)

    Google Scholar 

  36. W. Acree Jr., J.S. Chickos, J. Phys. Chem. Ref. Data 46, 013104 (2017)

    ADS  Google Scholar 

  37. M.I. Yagofarov, B.N. Solomonov, J. Chem. Thermodyn. 152, 106278 (2021)

    Google Scholar 

  38. M.I. Yagofarov, S.E. Lapuk, T.A. Mukhametzyanov, M.A. Ziganshin, C. Schick, B.N. Solomonov, J. Mol. Liq. 278, 394 (2019)

    Google Scholar 

  39. H. Finke, J. Messerly, S. Lee, A. Osborn, D. Douslin, J. Chem. Thermodyn. 9, 937 (1977)

    Google Scholar 

  40. P.R. van der Linde, J.C. van Miltenburg, G.J. van den Berg, H.A. Oonk, J. Chem. Eng. Data 50, 164 (2005)

    Google Scholar 

  41. J. Cees van Miltenburg, H.A.J. Oonk, G.J.K. van den Berg, J. Chem. Eng. Data 45, 704 (2000)

    Google Scholar 

  42. I. Rabinovich, N. Karyakin, E. Dzharimova, S. Siling, I. Ponomarev, S. Vinogradova, Bull. Acad. Sci. USSR, Div. Chem. Sci. 33, 716 (1984)

  43. B.N. Solomonov, M.A. Varfolomeev, R.N. Nagrimanov, V.B. Novikov, D.H. Zaitsau, S.P. Verevkin, Thermochim. Acta 589, 164 (2014)

    Google Scholar 

  44. B.N. Solomonov, M.A. Varfolomeev, R.N. Nagrimanov, V.B. Novikov, M.A. Ziganshin, A.V. Gerasimov, S.P. Verevkin, J. Chem. Eng. Data 60, 748 (2015)

    Google Scholar 

  45. R.N. Nagrimanov, A.A. Samatov, A.V. Buzyurov, A.G. Kurshev, M.A. Ziganshin, D.H. Zaitsau, B.N. Solomonov, Thermochim. Acta 668, 152 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 22-43-04412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail I. Yagofarov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagofarov, M.I., Solomonov, B.N. Interpolation of the Temperature Dependence of the Fusion Enthalpy of Aromatic Compounds Between 298.15 K and the Melting Temperature. Int J Thermophys 43, 90 (2022). https://doi.org/10.1007/s10765-022-03020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03020-1

Keywords

Navigation