Skip to main content
Log in

The thermal analysis of zinc oxide-contaminated Portland cement blended with thiocyanates and determination of their effect on hydration and properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The contamination of cement binders with zinc represents a significant problem due to the negative effects on cement hydration. Zinc compounds cause a drastic increase in setting time due to prolonging the induction period. The currently accepted mechanism behind this effect is the formation of Ca(Zn(OH)3)2·2 H2O hydrates on the surface of cement grains that deplete Ca2+ ions from the pore solution and creates a diffusion barrier. Hydration accelerators are commonly employed in the concrete industry to counter long setting time caused by low temperature and contamination by heavy metals. These compounds influence both hydration kinetics and composition of hydration products. The influence of various compounds on the mechanism of cement hydration can be studied using calorimetric methods such as isoperibolic and isothermal calorimetry. The hydration of the material was stopped, and the properties of hydrated cement pastes were studied using differential thermal analysis, X-ray diffraction and scanning electron microscopy. Some setting accelerators have been found to significantly decrease setting time of zinc-contaminated cement. Out of the most used compounds in commercial accelerators, the efficiency of thiocyanates is yet to be determined. The results show that thiocyanates induce a visible change in hydration mechanism of cement to various degrees depending on concentration and on the presence of the specific cation. Alkali thiocyanates drastically retard the hydration of zinc-contaminated OPC. With further retarded hydration of cement, the mechanical properties were negatively impacted. Calcium thiocyanate on the other hand effectively accelerates setting and positively impacts compressive strength at low doses. Main difference between the influence of alkali and calcium thiocyanates on setting is the change in ettringite content. Alkali salt promotes AFm phases at the expense of ettringite content while calcium salt promotes formation of ettringite at early stages of cement hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Gineys N, Aouad G, Damidot D. Managing trace elements in Portland cement: Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cement Concr Compos. 2010;32(8):563–70. https://doi.org/10.1016/j.cemconcomp.2010.06.002.

    Article  CAS  Google Scholar 

  2. Gineys N, Aouad G, Damidot D. Managing trace elements in Portland cement: Part II: Comparison of two methods to incorporate Zn in a cement. Cement Concr Compos. 2011;33(6):629–36. https://doi.org/10.1016/j.cemconcomp.2011.03.008.

    Article  CAS  Google Scholar 

  3. Tashiro C, Takahashi H, Kanaya M, Hirakida I, Yoshida R. Hardening property of cement mortar adding heavy metal compound and solubility of heavy metal from hardened mortar. Cement Concr Res. 1977;7(3):283–90. https://doi.org/10.1016/0008-8846(77)90090-4.

    Article  CAS  Google Scholar 

  4. Yousuf M, Mollah A, Hess TR, Tsai Y-N, Cocke DL. An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc. Cement Concr Res. 1993;23(4):773–84. https://doi.org/10.1016/0008-8846(93)90031-4.

    Article  Google Scholar 

  5. Weeks C, Hand RJ, Sharp JH. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cement Concr Compos. 2008;30(10):970–8. https://doi.org/10.1016/j.cemconcomp.2008.07.005.

    Article  CAS  Google Scholar 

  6. Keppert M, Jerman M, Scheinherrová L, Reiterman P, Doušová B, Černý R. Influence of free and sorbed zinc on cement hydration. J Thermal Anal Calorim. 2019;138(3):1935–43. https://doi.org/10.1007/s10973-019-08200-0.

    Article  CAS  Google Scholar 

  7. Arliguie G, Ollivier J, Grandet J. Etude de l’effet retardateur du zinc sur l’hydratation de la pate de ciment Portland. Cement Concr Res. 1982;12(1):79–86. https://doi.org/10.1016/0008-8846(82)90101-6.

    Article  CAS  Google Scholar 

  8. Ataie FF, Juenger MC, Taylor-Lange SC, Riding KA. Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials. Cem Concr Res. 2015;72:128–36. https://doi.org/10.1016/j.cemconres.2015.02.023.

    Article  CAS  Google Scholar 

  9. Šiler P, Kolářová I, Novotný R, Másilko J, Bednárek J, Janča M, Šoukal F. Use of isothermal and isoperibolic calorimetry to study the effect of zinc on hydration of cement blended with Fly Ash. Materials. 2020. 13(22):1996–1944. https://doi.org/10.3390/ma13225215.

    Article  CAS  Google Scholar 

  10. Šiler P, Kolářová I, Novotný R, Másilko J, Bednárek J, Janča M, Šoukal F. Application of isothermal and isoperibolic calorimetry to assess the effect of zinc on hydration of cement blended with slag. Materials. 2019. 12(18):1996–1944. https://doi.org/10.3390/ma12182930.

    Article  CAS  Google Scholar 

  11. Li XG, Yin XB, Ma BG, Wu B, Chen Q, Lv Y. Investigation on hydration characteristics of zinc-doped Portland cement pastes. Adv Mater Res. 2010;168–170:623–7. https://doi.org/10.4028/www.scientific.net/AMR.168-170.623.

    Article  CAS  Google Scholar 

  12. Liu J, Jin H, Gu C, Yang Y. Effects of zinc oxide nanoparticles on early-age hydration and the mechanical properties of cement paste. Constr Build Mater. 2019;217:352–62. https://doi.org/10.1016/j.conbuildmat.2019.05.027.

    Article  CAS  Google Scholar 

  13. Ouki S, Hills C. Microstructure of Portland cement pastes containing metal nitrate salts. Waste Manag. 2002;22(2):147–51. https://doi.org/10.1016/S0956-053X(01)00063-0.

    Article  CAS  PubMed  Google Scholar 

  14. Šiler P, Kolářová I, Novotný R, Másilko J, Pořízka J, Bednárek J, Opravil T. Application of isothermal and isoperibolic calorimetry to assess the effect of zinc on cement hydration. J Therm Anal Calorim. 2018;133(1):27–40. https://doi.org/10.1007/s10973-017-6815-1.

    Article  CAS  Google Scholar 

  15. Fernández Olmo I, Chacon E, Irabien A. Influence of lead, zinc, iron (III) and chromium (III) oxides on the setting time and strength development of Portland cement. Cement Concr Res. 2001;31(8):1213–9. https://doi.org/10.1016/S0008-8846(01)00545-2.

    Article  Google Scholar 

  16. Pang X, Boul P, Cuello Jimenez W. Isothermal calorimetry study of the effect of chloride accelerators on the hydration kinetics of oil well cement. Constr Build Mater. 2015;77:260–9. https://doi.org/10.1016/j.conbuildmat.2014.12.077.

    Article  Google Scholar 

  17. Justnes H, Nygaard EC. Technical calcium nitrate as set accelerator for cement at low temperatures. Cement Concr Res. 1995;25(8):1766–74. https://doi.org/10.1016/0008-8846(95)00172-7.

    Article  CAS  Google Scholar 

  18. Wise T, Ramachandran V, Polomark G. The effect of thiocyanates on the hydration of Portland cement at low temperatures. Thermochim Acta. 1995;264:157–71. https://doi.org/10.1016/0040-6031(95)02323-T.

    Article  CAS  Google Scholar 

  19. Snellings R, Chwast J, Cizer Ö, De Belie N, Dhandapani Y, Durdzinski P, Lothenbach B. RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages. Mater Struct. 2018. https://doi.org/10.1617/s11527-018-1298-5.

    Article  Google Scholar 

  20. Brandštetr J, Polcer J, Krátký J, Holešinský R, Havlica J. Possibilities of the use of isoperibolic calorimetry for assessing the hydration behavior of cementitious systems. Cement Concr Res. 2001;31(6):941–7. https://doi.org/10.1016/S0008-8846(01)00495-1.

    Article  Google Scholar 

  21. Šiler P, Krátký J, Kolářová I, Havlica J, Brandštetr J. Calorimetric determination of the effect of additives on cement hydration process. Chem Papers. 2013;67(2):213–20. https://doi.org/10.2478/s11696-012-0256-x.

    Article  CAS  Google Scholar 

  22. Mostafa N, Brown P. Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry. Thermochim Acta. 2005;435(2):162–7. https://doi.org/10.1016/j.tca.2005.05.014.

    Article  CAS  Google Scholar 

  23. Young J, Berger R, Lawrence F. Studies on the hydration of tricalcium silicate pastes III. Influence of admixtures on hydration and strength development. Cement Concr Res. 1973;3(6):689–700. https://doi.org/10.1016/0008-8846(73)90004-5.

    Article  CAS  Google Scholar 

  24. Ylmén R, Jäglid U, Steenari B-M, Panas I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cement Concr Res. 2009;39(5):433–9. https://doi.org/10.1016/j.cemconres.2009.01.017.

    Article  CAS  Google Scholar 

  25. Pane I, Hansen W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement Concr Res. 2005;35(6):1155–64. https://doi.org/10.1016/j.cemconres.2004.10.027.

    Article  CAS  Google Scholar 

  26. Neto JDA, De la Torre AG, Kirchheim AP. Effects of sulfates on the hydration of Portland cement: a review. Constr Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2021.122428.

    Article  Google Scholar 

  27. Huang L, Yan P. Effect of alkali content in cement on its hydration kinetics and mechanical properties. Constr Build Mater. 2019. https://doi.org/10.1016/j.conbuildmat.2019.116833.

    Article  Google Scholar 

  28. Alarcon-Ruiz L, Platret G, Massieu E, Ehrlacher A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement Concr Res. 2005;35(3):609–13. https://doi.org/10.1016/j.cemconres.2004.06.015.

    Article  CAS  Google Scholar 

  29. Zhou Q, Glasser F. Thermal stability and decomposition mechanisms of ettringite at <120 °C. Cement Concr Res. 2001;31(9):1333–9. https://doi.org/10.1016/S0008-8846(01)00558-0.

    Article  CAS  Google Scholar 

  30. Neves Junior A, Toledo Filho RD, Fairbairn ED, Dweck J. Early stages hydration of high initial strength Portland cement. J Therm Anal Calorim. 2012;108(2):725–31. https://doi.org/10.1007/s10973-012-2256-z.

    Article  CAS  Google Scholar 

  31. Mitchell LD, Margeson JC. The effects of solvents on C–S–H as determined by thermal analysis. J Thermal Anal Calorim. 2006;86(3):591–4. https://doi.org/10.1007/s10973-006-7712-1.

    Article  CAS  Google Scholar 

  32. Ramachandran V. Handbook of thermal analysis of construction materials. Norwich: Noyes Publications/William Andrew Pub; 2003.

    Google Scholar 

  33. Murzyn P, Malata G, Wiśniewska J, Kapeluszna E, Nocuń-Wczelik W. Characterization of 40-year-old calcium silicate pastes by thermal methods and other techniques. J Therm Anal Calorim. 2019;138(6):4271–8. https://doi.org/10.1007/s10973-019-08519-8.

    Article  CAS  Google Scholar 

  34. Snellings R, Chwast J, Cizer Ö, De Belie N, Dhandapani Y, Durdzinski P, Lothenbach B. Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test. Mater Struct. 2018;51(4):1–5. https://doi.org/10.1617/s11527-018-1237-5.

    Article  CAS  Google Scholar 

  35. Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Thomas JJ. Mechanisms of cement hydration. Cement Concr Res. 2011;41(12):1208–23. https://doi.org/10.1016/j.cemconres.2010.09.011.

    Article  CAS  Google Scholar 

  36. Švec J, Šiler P, Másilko J, Novotný R, Koplík J, Janča M, Kolářová I. Simultaneous thermogravimetric and differential thermal analysis determination of products formed during hydration of blended Portland cement doped with zinc. J Therm Anal Calorim. 2020;142(5):1749–58. https://doi.org/10.1007/s10973-020-10253-5.

    Article  CAS  Google Scholar 

  37. Qoku E, Bier TA, Westphal T. Phase assemblage in ettringite-forming cement pastes: a X-ray diffraction and thermal analysis characterization. J Build Eng. 2017;12:37–50. https://doi.org/10.1016/j.jobe.2017.05.005.

    Article  Google Scholar 

  38. Jo D, Leonardo RS, Cartledge FK, Reales OA, Toledo Filho RD. Gypsum content determination in Portland cements by thermogravimetry. J Thermal Anal Calorim. 2016;123(2):1053–62. https://doi.org/10.1007/s10973-015-5078-y.

    Article  CAS  Google Scholar 

  39. Valentini L, Dalconi MC, Favero M, Artioli G, Ferrari G, Scherer G. In-Situ XRD measurement and quantitative analysis of hydrating cement: implications for sulfate incorporation in C-S-H. J Am Ceramic Soc. 2015;98(4):1259–64. https://doi.org/10.1111/jace.13401.

    Article  CAS  Google Scholar 

  40. Hesse C, Goetz-Neunhoeffer F, Neubauer J, Braeu M, Gaeberlein P. Quantitative in situ X-ray diffraction analysis of early hydration of Portland cement at defined temperatures. Powder Diffr. 2009;24(2):112–5. https://doi.org/10.1154/1.3120603.

    Article  CAS  Google Scholar 

  41. Zajac M, Rossberg A, Le Saout G, Lothenbach B. Influence of limestone and anhydrite on the hydration of Portland cements. Cement Concr Compos. 2014;46:99–108. https://doi.org/10.1016/j.cemconcomp.2013.11.007.

    Article  CAS  Google Scholar 

  42. Chaunsali P, Mondal P. Influence of mineral admixtures on early-age behavior of calcium sulfoaluminate cement. ACI Mater J. 2015. https://doi.org/10.14359/51687240.

    Article  Google Scholar 

  43. Matschei T, Lothenbach B, Glasser F. The AFm phase in Portland cement. Cement Concr Res. 2007;37(2):118–30. https://doi.org/10.1016/j.cemconres.2006.10.010.

    Article  CAS  Google Scholar 

  44. Christensen AN, Jensen TR, Hanson JC. Formation of ettringite, Ca6Al2(SO4)3(OH)12·26H2O, AFt, and monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide—calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction. J Solid State Chem. 2004;177(6):1944–51. https://doi.org/10.1016/j.jssc.2003.12.030.

    Article  CAS  Google Scholar 

  45. Šiler P, Kolářová I, Sehnal T, Másilko J, Opravil T. The Determination of the influence of pH value of curing conditions on Portland cement hydration. Procedia Eng. 2016;151:10–7. https://doi.org/10.1016/j.proeng.2016.07.393.

    Article  CAS  Google Scholar 

  46. Brown PW, Bothe JV. The stability of ettringite. Adv Cement Res. 1993;5(18):47–63. https://doi.org/10.1680/adcr.1993.5.18.47.

    Article  CAS  Google Scholar 

  47. Antar A, Adel A, Mona A, Noureldeen T. The C3A: gypsum system in alkali sulfate solutions. Ceram Silikáty. 2010;54(1):53–9.

    Google Scholar 

  48. Zhang Z, Han F, Yan P. Modelling the dissolution and precipitation process of the early hydration of C3S. Cem Concr Res. 2020. https://doi.org/10.1016/j.cemconres.2020.106174.

    Article  Google Scholar 

  49. Kirchheim AP, Fernàndez-Altable V, Monteiro PJ, Dal Molin DC, Casanova I. Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime. J Mater Sci. 2009;44(8):2038–45. https://doi.org/10.1007/s10853-009-3292-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seifan M, Berenjian A. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World J Microbiol Biotechnol. 2018. https://doi.org/10.1007/s11274-018-2552-2.

    Article  PubMed  Google Scholar 

  51. Qudoos A, Kim H, Ryou J-S. Influence of titanium dioxide nanoparticles on the sulfate attack upon ordinary Portland cement and slag-blended mortars. Materials. 2018. https://doi.org/10.3390/ma11030356.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jin W, Jiang L, Han L, Chen L, Yan X, Chen C. Influence of curing temperature on the mechanical properties and microstructure of limestone powder mass concrete. Struct Concr. 2021. https://doi.org/10.1002/suco.201900549.

    Article  Google Scholar 

  53. Baquerizo LG, Matschei T, Scrivener KL, Saeidpour M, Wadsö L. Hydration states of AFm cement phases. Cem Concr Res. 2015;73:143–57. https://doi.org/10.1016/j.cemconres.2015.02.011.

    Article  CAS  Google Scholar 

  54. Camilleri J. Mineral trioxide aggregate: present and future developments. Endod Topics. 2015;32(1):31–46. https://doi.org/10.1111/etp.12073.

    Article  Google Scholar 

  55. Franus W, Panek R, Wdowin M. SEM investigation of microstructures in hydration products of Portland cement. Int Multidiscip Microsc Microanal Congress. 2015;164:105–12. https://doi.org/10.1007/978-3-319-16919-4_14.

    Article  CAS  Google Scholar 

Download references

Funding

This outcome has been achieved with the financial support by the project: GA19-16646S “The elimination of the negative impact of zinc in Portland cement by accelerating concrete admixtures”, with financial support from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

LM contributed to original draft preparation, investigation and formal analysis. PS contributed to conceptualization and editing. JS, JM, RN and JK contributed to investigation, data curation, formal analysis and methodology. FS contributed to project administration and supervision.

Corresponding author

Correspondence to Lukas Matejka.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matejka, L., Siler, P., Novotny, R. et al. The thermal analysis of zinc oxide-contaminated Portland cement blended with thiocyanates and determination of their effect on hydration and properties. J Therm Anal Calorim 148, 1321–1349 (2023). https://doi.org/10.1007/s10973-022-11666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11666-0

Keywords

Navigation