Skip to main content
Log in

Passive heat transfer augmentation in conduits by surface modification: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of this study is to review the common passive enhancement techniques with an emphasis on surface modification approaches used for heat transfer enhancement in heat exchangers. The common passive enhancement techniques are discussed, and surface modification approaches are further analyzed. Furthermore, some of the techniques used to generate surface alteration are explored along with the experimental and numerical methods used to study them. Different numerical models used for the calculations are also compared, and the validity of using such numerical models is reviewed. The available earlier work conducted on conduit internal surface grooving is summarized of their contributions to heat transfer enhancement, and the associated pressure loss penalties are discussed. In addition to the surface grooving, the influence of operating fluid is also explored, both as a passive enhancement technique and as a contributing factor in heat transfer enhancement to the surface alteration. It can be concluded that surface alteration of internal conduit provides different level of improvements which highly depend on the geometrical pattern and dimension of the surface along with the surface parameter, namely the depth, width, pitch and inclination angle. Further, the angle parameter and surface continuity provide the dominant factor for the improvement owing to enhanced fluid mixing and reduced stationary flow sites as evident from the numerical study. Finally, the way forward for future research is discussed which emphasizes on the need to provide a generalized condition for surface alteration where all correlating parameters can be assembled to produce a unified model. This serves as valuable tool for engineers towards applying this passive method for thermal management solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kiran K, Asalammaraja M, Umesh C. A review on effect of various types of tube inserts on performance parameters of heat exchanger. Int J Res Advent Technol. 2014;2:2321–9637.

    Google Scholar 

  2. Çengel YA,. Ghajar AJ, Heat and Mass Transfer: Fundamentals [and] Applications. New York City, 2020.

  3. Zimparov V. Energy conservation through heat transfer enhancement techniques. Int J Energy Res. 2002;26:675–96.

    Article  CAS  Google Scholar 

  4. Bergles AE. The implications and challenges of enhanced heat transfer for the chemical process industries. Chem Eng Res Des. 2001;79:437–44.

    Article  CAS  Google Scholar 

  5. Zeeshan A, Hassan M, Ellahi R, Nawaz M. Shape effect of nanosize particles in unsteady mixed convection flow of nanofluid over disk with entropy generation, Proc. Inst. Mech. Eng Part E J Process Mech Eng. 2017;231:871–9.

    Article  Google Scholar 

  6. C. Onan, D.B. Ozkan, L. Ceran, Heat transfer analysis of internally grooved copper tube R404-A Evaporators, in: ASME Int. Mech. Eng. Congr. Expo. 2012. 1645–1649.

  7. Bilen K, Cetin M, Gul H, Balta T. The investigation of groove geometry effect on heat transfer for internally grooved tubes. Appl Therm Eng. 2009;29:753–61.

    Article  CAS  Google Scholar 

  8. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7:141–50.

    Article  CAS  Google Scholar 

  9. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.

    Article  Google Scholar 

  10. Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids—a review. Renew Sustain Energy Rev. 2013;21:548–61.

    Article  CAS  Google Scholar 

  11. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices. J Therm Anal Calorim. 2021;145:2817–72.

    Article  CAS  Google Scholar 

  12. Montazer E, Yarmand H, Salami E, Muhamad MR, Kazi SN, Badarudin A. A brief review study of flow phenomena over a backward-facing step and its optimization. Renew Sustain Energy Rev. 2018;82:994–1005.

    Article  CAS  Google Scholar 

  13. Yang D, Sun B, Xu T, Liu B, Li H. Experimental and numerical study on the flow and heat transfer characteristic of nanofluid in the recirculation zone of backward-facing step microchannels. Appl Therm Eng. 2021;199: 117527.

    Article  CAS  Google Scholar 

  14. Alam T, Kim M-H. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sustain Energy Rev. 2018;81:813–39.

    Article  CAS  Google Scholar 

  15. Kherbeet AS, Safaei MR, Mohammed HA, Salman BH, Ahmed HE, Alawi OA, Al-Asadi MT. Heat transfer and fluid flow over microscale backward and forward facing step: a review. Int Commun Heat Mass Transf. 2016;76:237–44.

    Article  CAS  Google Scholar 

  16. Panda S, Kumar R. A review on effect of various artificial roughness on heat transfer enhancement in a channel flow. J Therm Eng. 2021;7:1267–301.

    Article  CAS  Google Scholar 

  17. Zheng N, Yan F, Zhang K, Zhou T, Sun Z. A review on single-phase convective heat transfer enhancement based on multi-longitudinal vortices in heat exchanger tubes. Appl Therm Eng. 2020;164: 114475.

    Article  Google Scholar 

  18. Keklikcioglu O, Ozceyhan V. A review of heat transfer enhancement methods using coiled wire and twisted tape inserts. In: Volkov Konstantin, editor. Heat Transfer - Models, Methods and Applications. InTech; 2018. https://doi.org/10.5772/intechopen.74516.

    Chapter  Google Scholar 

  19. Garg MO, Nautiyal H, Khurana S, Shukla MK. others, Heat transfer augmentation using twisted tape inserts: a review. Renew Sustain Energy Rev. 2016;63:193–225.

    Article  Google Scholar 

  20. Dewan A, Mahanta P, Sumithra Raju K, Suresh Kumar P. Review of passive heat transfer augmentation techniques. Proc Inst Mech Eng Part A: J Power Energy. 2004;218(7):509–27. https://doi.org/10.1243/0957650042456953.

    Article  CAS  Google Scholar 

  21. Nguyen DH, Ahn HS. A comprehensive review on micro/nanoscale surface modification techniques for heat transfer enhancement in heat exchanger. Int J Heat Mass Transf. 2021;178: 121601.

    Article  CAS  Google Scholar 

  22. Zhang J, Zhu X, Mondejar ME, Haglind F. A review of heat transfer enhancement techniques in plate heat exchangers. Renew Sustain Energy Rev. 2019;101:305–28.

    Article  CAS  Google Scholar 

  23. Nouri-Borujerdi A, Nakhchi ME. Heat transfer enhancement in annular flow with outer grooved cylinder and rotating inner cylinder: Review and experiments. Appl Therm Eng. 2017;120:257–68.

    Article  Google Scholar 

  24. Abouali O, Baghernezhad N. Numerical investigation of heat transfer enhancement in a microchannel with grooved surfaces. J Heat Transfer. 2010. https://doi.org/10.1115/1.4000862.

    Article  Google Scholar 

  25. Yun R, Heo JH, Kim Y. Evaporative heat transfer and pressure drop of R410A in microchannels. Int J Refrig. 2006;29:92–100.

    Article  CAS  Google Scholar 

  26. Aly WIA., Elbalshouny MA, Abd El-Hameed HM, Fatouh M. Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al 2 O 3 nanofluid at different inclination angle and filling ratio. Appl Thermal Eng. 2017;110:1294–304. https://doi.org/10.1016/j.applthermaleng.2016.08.130.

    Article  CAS  Google Scholar 

  27. Eiamsa-Ard S, Seemawute P, Wongcharee K. Influences of peripherally-cut twisted tape insert on heat transfer and thermal performance characteristics in laminar and turbulent tube flows. Exp Therm Fluid Sci. 2010;34:711–9.

    Article  Google Scholar 

  28. Li X, Meng J, Guo Z. Turbulent flow and heat transfer in discrete double inclined ribs tube. Int J Heat Mass Transf. 2009;52:962–70.

    Article  CAS  Google Scholar 

  29. Promvonge P, Khanoknaiyakarn C, Kwankaomeng S, Thianpong C. Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet. Int Commun Heat Mass Transf. 2011;38:749–56.

    Article  Google Scholar 

  30. Promvonge P, Chompookham T, Kwankaomeng S, Thianpong C. Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators. Energy Convers Manag. 2010;51:1242–9.

    Article  Google Scholar 

  31. Ramadhan AA, Al YT, Anii AJ, Shareef AJ. Groove geometry effects on turbulent heat transfer and fluid flow. Heat and Mass Transfer. 2013;49(2):185–95. https://doi.org/10.1007/s00231-012-1076-9.

    Article  CAS  Google Scholar 

  32. Graham D, Chato JC, Newell TA. Heat transfer and pressure drop during condensation of refrigerant 134a in an axially grooved tube. Int J Heat Mass Transf. 1999;42:1935–44.

    Article  CAS  Google Scholar 

  33. Goto M, Inoue N, Yonemoto R. Condensation heat transfer of R410A inside internally grooved horizontal tubes. Int J Refrig. 2003;26:410–6.

    Article  CAS  Google Scholar 

  34. Miyara A, Otsubo Y, Ohtsuka S, Mizuta Y. Effects of fin shape on condensation in herringbone microfin tubes. Int J Refrig. 2003;26:417–24.

    Article  CAS  Google Scholar 

  35. Li H, Wang Y, Han Y, Li W, Yang Lin, Guo J, Liu Y, Zhang J, Zhang M, Jiang F. A comprehensive review of heat transfer enhancement and flow characteristics in the concentric pipe heat exchanger. Powder Technology. 2022;397:117037. https://doi.org/10.1016/j.powtec.2021.117037.

    Article  CAS  Google Scholar 

  36. Chiam HW, Azmi WH, Adam NM, Ariffin M. Numerical study of nanofluid heat transfer for different tube geometries–A comprehensive review on performance. Int Commun Heat Mass Transf. 2017;86:60–70.

    Article  CAS  Google Scholar 

  37. Khan WA, Khan MI, Kadry S, Farooq S, Khan MI, Abbas SZ. Transportation of water-based trapped bolus of SWCNTs and MWCNTs with entropy optimization in a non-uniform channel. Neural Comput Appl. 2020;32:13565–76.

    Article  Google Scholar 

  38. Khan WA, Anjum N, Waqas M, Abbas SZ, Irfan M, Muhammad T. Impact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid. J Mater Res Technol. 2021;15:306–14.

    Article  CAS  Google Scholar 

  39. Léal L, Miscevic M, Lavieille P, Amokrane M, Pigache F, Topin F, Nogarède B, Tadrist L. An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. Int J Heat Mass Transf. 2013;61:505–24.

    Article  Google Scholar 

  40. T. Ebisu, H. Fujino, K. Torikoshi, Heat transfer characteristics and heat exchanger performances for R407C using herringbone heat transfer tube, (1998).

  41. Miyara A, Nonaka K, Taniguchi M. Condensation heat transfer and flow pattern inside a herringbone-type micro-fin tube. Int J Refrig. 2000;23:141–52.

    Article  CAS  Google Scholar 

  42. Jadhav M, Awari R, Bibe D, Bramhane A, Mokashi M. Review on enhancement of heat transfer by active method. Int J Curr Eng Technol. 2016;6:221–5.

    Google Scholar 

  43. B. M’hamed, N.A.C. Sidik, M.N.A.W.M. Yazid, R. Mamat, G. Najafi, G.H.R. Kefayati, A review on why researchers apply external magnetic field on nanofluids, Int. Commun. Heat Mass Transf. 78 (2016) 60–67.

  44. Yong LI, Hui X, Bin L, Yong T, Zeng Z-X. Forming method of axial micro grooves inside copper heat pipe. Trans Nonferrous Met Soc China. 2008;18:1229–33.

    Article  Google Scholar 

  45. Liu WI, Alsarraf J, Shahsavar A, Rostamzadeh M, Afrand M, Nguyen TK. Impact of oscillating magnetic field on the thermal-conductivity of water-Fe3O4 and water-Fe3O4/CNT ferro-fluids: Experimental study. J Magn Magn Mater. 2019;484:258–65.

    Article  CAS  Google Scholar 

  46. P.A. Deshpande, A.R. Inamdar, S.R. Gadekar, REVIEW ON ADVANCED FINISHING PROCESSES (AFPs),2016, (n.d.).

  47. H. Kumar, S. Singh, G. Nanak, P. Kumar, Magnetic abrasive finishing-a review, (2013).

  48. Ridha MM, Yanhua Z, Hitoshi S. others, Development of a new internal finishing of tube by magnetic abrasive finishing process combined with electrochemical machining. Int J Mech Eng Appl. 2015;3:22–9.

    Google Scholar 

  49. Aroonrat K, Jumpholkul C, Leelaprachakul R, Dalkilic AS, Mahian O, Wongwises S. Heat transfer and single-phase flow in internally grooved tubes. Int Commun Heat Mass Transf. 2013;42:62–8.

    Article  Google Scholar 

  50. F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, others, Fundamentals of heat and mass transfer, Wiley New York, 1996.

  51. Sanvicente E, Giroux-Julien S, Ménézo C, Bouia H. Transitional natural convection flow and heat transfer in an open channel. Int J Therm Sci. 2013;63:87–104.

    Article  Google Scholar 

  52. Dittus FW. Heat transfer in automobile radiators of the tubler type. Univ Calif Pubs Eng. 1930;2:443.

    Google Scholar 

  53. Blasius H. Das aehnlichkeitsgesetz bei reibungsvorgängen in flüssigkeiten. In: Mitteilungen Über Forschungsarbeiten Auf Dem Gebiete Des Ingenieurwesens. Berlin, Heidelberg: Springer Berlin Heidelberg; 1913. p. 1–41. https://doi.org/10.1007/978-3-662-02239-9_1.

    Chapter  Google Scholar 

  54. Aubin J, Fletcher DF, Xuereb C. Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme. Exp Therm Fluid Sci. 2004;28:431–45.

    Article  CAS  Google Scholar 

  55. Abed AM, Sopian K, Mohammed HA, Alghoul MA, Ruslan MH, Mat S, Al-Shamani AN. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids, Case Stud. Therm Eng. 2015;5:13–23.

    Google Scholar 

  56. Selvaraj P, Sarangan J, Suresh S. Computational fluid dynamics analysis on heat transfer and friction factor characteristics of a turbulent flow for internally grooved tubes. Therm Sci. 2013;17:1125–37.

    Article  Google Scholar 

  57. Eiamsa-ard S, Promvonge P. Numerical study on heat transfer of turbulent channel flow over periodic grooves. Int Commun Heat Mass Transf. 2008;35:844–52.

    Article  CAS  Google Scholar 

  58. P. Bharathidasan, N. Azhaguvel, Heat Transfer Characteristics in various Groove Geometry under the effect of Nano Particles, (n.d.).

  59. Chiang Y-C, Kuo W-C, Ho C-C, Chieh J-J. Experimental study on thermal performances of heat pipes for air-conditioning systems influenced by magnetic nanofluids, external fields, and micro wicks. Int J Refrig. 2014;43:62–70.

    Article  Google Scholar 

  60. Dang C, Haraguchi N, Hihara E. Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube. Int J Refrig. 2010;33:655–63.

    Article  CAS  Google Scholar 

  61. Han W-S, Rhi S-H. Thermal characteristics of grooved heat pipe with hybrid nanofluids. Therm Sci. 2011;15:195–206.

    Article  Google Scholar 

  62. Inoue N, Ichinose J. Single-phase heat transfer and pressure drop inside internally helical-grooved horizontal small-diameter tubes. Int J Air-Conditioning Refrig. 2012;20:1250022.

    Article  Google Scholar 

  63. Mehrali M, Sadeghinezhad E, Azizian R, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers Manag. 2016;118:459–73.

    Article  CAS  Google Scholar 

  64. Qu J, Li X, Wang Q, Liu F, Guo H. Heat transfer characteristics of micro-grooved oscillating heat pipes. Exp Therm Fluid Sci. 2017;85:75–84.

    Article  Google Scholar 

  65. Inoue N, Iku S, Watanabe K. Pressure drop and heat transfer inside the coiled flow channel of smooth tubes and internally helical-grooved tubes. Int J Air-Conditioning Refrig. 2012;20:1250023.

    Article  Google Scholar 

  66. Yousefi T, Heidari M. Thermal performance enhancement of L-shaped microgrooved heat pipe containing water-based Al2O3 nanofluids. Heat Transf Eng. 2015;36:462–70.

    Article  CAS  Google Scholar 

  67. Zhang X, Zhang J, Ji H, Zhao D. Heat transfer enhancement and pressure drop performance for R417A flow boiling in internally grooved tubes. Energy. 2015;86:446–54.

    Article  CAS  Google Scholar 

  68. Zheng N, Liu P, Shan F, Liu Z, Liu W. Heat transfer enhancement in a novel internally grooved tube by generating longitudinal swirl flows with multi-vortexes. Appl Therm Eng. 2016;95:421–32.

    Article  Google Scholar 

  69. Pirbastami S, Moujaes SF, Mol SG. Computational fluid dynamics simulation of heat enhancement in internally helical grooved tubes. Int Commun Heat Mass Transf. 2016;73:25–32.

    Article  Google Scholar 

  70. Kristiawan B Rifa’I AI, Enoki K Wijayanta AT Miyazaki T Enhancing the thermal performance of TiO2/water nanofluids flowing in a helical microfin tube, Powder Technol. 376 (2020) 254–262.

  71. Dastmalchi M, Arefmanesh A, Sheikhzadeh GA. Numerical investigation of heat transfer and pressure drop of heat transfer oil in smooth and micro-finned tubes. Int J Therm Sci. 2017;121:294–304.

    Article  Google Scholar 

  72. Copetti JB, Macagnan MH, de Souza D, Oliveski RDC. Experiments with micro-fin tube in single phase. Int J Refrig. 2004;27:876–83.

    Article  CAS  Google Scholar 

  73. Brognaux LJ, Webb RL, Chamra LM, Chung BY. Single-phase heat transfer in micro-fin tubes. Int J Heat Mass Transf. 1997;40:4345–57.

    Article  Google Scholar 

  74. Cheng L, Chen T. Study of vapor liquid two-phase frictional pressure drop in a vertical heated spirally internally ribbed tube. Chem Eng Sci. 2007;62:783–92.

    Article  CAS  Google Scholar 

  75. Filho EPB, Jabardo JMS. Experimental study of the thermal hydraulic performance of sub-cooled refrigerants flowing in smooth, micro-fin and herringbone tubes. Appl Therm Eng. 2014;62(2):461–9. https://doi.org/10.1016/j.applthermaleng.2013.10.002.

    Article  CAS  Google Scholar 

  76. Han DH, Lee K-J. Single-phase heat transfer and flow characteristics of micro-fin tubes. Appl Therm Eng. 2005;25:1657–69.

    Article  Google Scholar 

  77. Li X-W, Meng J-A, Li Z-X. Experimental study of single-phase pressure drop and heat transfer in a micro-fin tube. Exp Therm Fluid Sci. 2007;32:641–8.

    Article  CAS  Google Scholar 

  78. Al-Fahed SF, Ayub ZH, Al-Marafie AM, Soliman BM. Heat transfer and pressure drop in a tube with internal microfins under turbulent water flow conditions. Exp Therm Fluid Sci. 1993;7:249–53.

    Article  CAS  Google Scholar 

  79. Zdaniuk GJ, Chamra LM, Mago PJ. Experimental determination of heat transfer and friction in helically-finned tubes. Exp Therm Fluid Sci. 2008;32:761–75.

    Article  Google Scholar 

  80. Raj R, Lakshman NS, Mukkamala Y. Single phase flow heat transfer and pressure drop measurements in doubly enhanced tubes. Int J Therm Sci. 2015;88:215–27.

    Article  CAS  Google Scholar 

  81. Promvonge P, Thianpong C. Thermal performance assessment of turbulent channel flows over different shaped ribs. Int Commun Heat Mass Transf. 2008;35:1327–34.

    Article  Google Scholar 

  82. Liu J, Gao J, Gao T, Shi X. Heat transfer characteristics in steam-cooled rectangular channels with two opposite rib-roughened walls. Appl Therm Eng. 2013;50:104–11.

    Article  Google Scholar 

  83. Kumar A, Saini RP, Saini JS. Experimental investigation on heat transfer and fluid flow characteristics of air flow in a rectangular duct with Multi v-shaped rib with gap roughness on the heated plate. Sol Energy. 2012;86:1733–49.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the University of Malaya Research Grant MOHE Top100 (IIRG)-IISS (Project no. IIRG006B-19IISS) and Research University Grant Scheme (Project no. GPF019A-2019). The authors wish to extend their appreciation to Mr Mohd Fauzi Bin Bakri and Mr Wan Mohd Hasanul lsyraf Wan Yusoff from the Faculty of Engineering, University of Malaya, for their assistance during this work.

Author information

Authors and Affiliations

Authors

Contributions

MMAAE is the writer of the manuscript with the supervision, guidance and support of MNMZ, MRBM, and KMd. SN. While GA provided mainframe of the manuscript and proofreading, MHR, FAI and MSA and SA provided research content on the topics given within the paper.

Corresponding authors

Correspondence to Mohamed Moustafa Abdelhalim Ahmed Eid or Mohd Nashrul Mohd Zubir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eid, M.M.A.A., Zubir, M.N.M., Muhamad, M.R.B. et al. Passive heat transfer augmentation in conduits by surface modification: a review. J Therm Anal Calorim 147, 14601–14620 (2022). https://doi.org/10.1007/s10973-022-11642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11642-8

Keywords

Navigation