Skip to main content

An Updated Review of Heat Transfer Enhancement Techniques in Tube-Type Heat Exchangers

  • Conference paper
  • First Online:
Fluid Mechanics and Fluid Power, Volume 1 (FMFP 2022)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 179 Accesses

Abstract

The present study reviews the heat transfer intensification techniques utilized by the researchers in recent decades. By discussing the methods of augmentation of heat transfer, the study confined to passive techniques which are being used in tube-type heat exchangers. The passive techniques of heat transfer intensification in tubular heat exchangers include surface modification, extended surfaces, artificial roughness, and the insertion of turbulence enhancement devices like winglets, baffles, twisted tape inserts, etc. The prime objective of the enhancement devices is to break the thermal boundary layer and to change the pattern of the flow inside the tube. Nanofluids additionally play a sizable position due to their better thermal conductivity. In the present review, the vital investigations associated with nanofluid usage in tubular heat exchangers have additionally included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Cross-sectional flow area

Ao:

Outer surface area of the heat exchanger, (m2)

cp:

Specific-heat capacity at constant pressure

d:

Hydraulic diameter of the inner pipe, (m)

h:

Convective heat transfer coefficient, (W/m2K)

k:

Thermal conductivity (W/mK)

L:

Rib length (m)

L*:

Rib length ratio

m:

Mass flow rate of the fluid, (kg/s)

p:

Pitch ratio

Pe:

Peclet Number

Nu:

Nusselt number

∆P:

Pressure drop

P*:

Rib pitch ratio

Th:

Hot fluid inlet temperature, (°C)

Tc:

Cold fluid inlet temperature, (°C)

Q:

Rate of heat transfer, (W)

r:

Radius of pipe, (m)

α:

Rib inclined angle (°)

β:

Winglet angle (°)

μ:

Dynamic viscosity, (N-s/m2)

\(\eta\):

Performance index

\(\varepsilon\):

Effectiveness

\({\uprho }\):

Density

Ø:

Volume fraction of nanoparticles (%)

ACT:

Asymmetric corrugated tube

CHTC:

Convective heat transfer coefficient

DPHE:

Double-pipe heat exchangers

HTR:

Heat transfer rate

Exp:

Experimental

EG:

Ethyl glycol

Num:

Numerical

MWCNT:

Multi-wall carbon nanotube

PEC:

Performance evaluation criteria

SWCNT:

Single-wall carbon nanotube

SCT:

Symmetric corrugated tube

VC:

Volume concentration

VGs:

Vortex generators

TT:

Twisted tape

THPI:

Thermohydraulic performance index

avg:

Average

b:

Bare pipe

bf:

Base fluid

c:

Cold

h:

Hot

i:

Inner

nf:

Nanofluid

np:

Nanoparticle

o:

Outer

cw:

Cold water

hw:

Hot water

s:

Smooth tube

ct:

Corrugated tube

References

  1. Dandoutiya BK, Kumar A (2021) CFD analysis for the performance improvement of a double pipe heat exchanger with twisted tape having triangular cut. Energy Sources Part A Recover Util Environ Eff 1–19. https://doi.org/10.1080/15567036.2021.1946215

  2. Singh SK, Kumar A (2020) Advances in heat transfer enhancement using twisted tape inserts with and without nanofluid. Int J Mech Prod Eng Res Dev 10(1):157–174. https://doi.org/10.24247/ijmperdfeb202014

    Article  Google Scholar 

  3. Dandoutiya BK, Kumar A (2019) A review on nano fluids for solar collector application. SSRN Electron J 1–10. https://doi.org/10.2139/ssrn.3442589

  4. Alam T, Kim MH (2018) A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sustain Energy Rev 81(August 2016):813–839. https://doi.org/10.1016/j.rser.2017.08.060

  5. Sidik NAC, Muhamad MNAW, Japar WMAA, Rasid ZA (2017) An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf 88(September):74–83. https://doi.org/10.1016/j.icheatmasstransfer.2017.08.009

    Article  Google Scholar 

  6. Lotfi B, Sundén B, Wang Q (2016) An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators. Appl Energy 162:1282–1302. https://doi.org/10.1016/j.apenergy.2015.07.065

    Article  Google Scholar 

  7. Alam T, Kim MH (2017) A critical review on artificial roughness provided in rectangular solar air heater duct. Renew Sustain Energy Rev 69(July 2016):387–400. https://doi.org/10.1016/j.rser.2016.11.192

  8. Poongavanam GK, Kumar B, Duraisamy S, Panchabikesan K, Ramalingam V (2019) Heat transfer and pressure drop performance of solar glycol/activated carbon based nanofluids in shot peened double pipe heat exchanger. Renew Energy 140:580–591. https://doi.org/10.1016/j.renene.2019.03.059

    Article  Google Scholar 

  9. Meng JA, Liang XG, Chen ZJ, Li ZX (2005) Experimental study on convective heat transfer in alternating elliptical axis tubes. Exp Therm Fluid Sci 29(4):457–465. https://doi.org/10.1016/j.expthermflusci.2004.04.006

    Article  Google Scholar 

  10. Singh P, Pandit J, Ekkad SV (2017) Characterization of heat transfer enhancement and frictional losses in a two-pass square duct featuring unique combinations of rib turbulators and cylindrical dimples. Int J Heat Mass Transf 106:629–647. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.037

    Article  Google Scholar 

  11. Nanan K, Thianpong C, Pimsarn M, Chuwattanakul V, Eiamsa-ard S (2017) Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators. Appl Therm Eng 114:130–147. https://doi.org/10.1016/j.applthermaleng.2016.11.153

    Article  Google Scholar 

  12. Eiamsa-ard S, Ruengpayungsak K, Thianpong C, Pimsarn M, Chuwattanakul V (2019) Parametric study on thermal enhancement and flow characteristics in a heat exchanger tube installed with protruded baffle bundles. Int J Therm Sci 145(November 2017):106016. https://doi.org/10.1016/j.ijthermalsci.2019.106016

  13. Tang W, Li W (2020) Frictional pressure drop during flow boiling in micro-fin tubes: a new general correlation. Int J Heat Mass Transf 159. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120049

  14. Promvonge P, Koolnapadol N, Pimsarn M, Thianpong C (2014) Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings. Appl Therm Eng 62(1):285–292. https://doi.org/10.1016/j.applthermaleng.2013.09.031

    Article  Google Scholar 

  15. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2015) Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices. Renew Sustain Energy Rev 49:444–469. https://doi.org/10.1016/j.rser.2015.04.113

    Article  Google Scholar 

  16. Zheng N, Yan F, Zhang K, Zhou T, Sun Z (2020) A review on single-phase convective heat transfer enhancement based on multi-longitudinal vortices in heat exchanger tubes. Appl Therm Eng 164(May 2019):114475. https://doi.org/10.1016/j.applthermaleng.2019.114475

  17. Sharifi K, Sabeti M, Rafiei M, Mohammadi AH, Shirazi L (2018) Computational fluid dynamics (CFD) technique to study the effects of helical wire inserts on heat transfer and pressure drop in a double pipe heat exchanger. Appl Therm Eng 128:898–910. https://doi.org/10.1016/j.applthermaleng.2017.08.146

    Article  Google Scholar 

  18. Vashistha C, Patil AK, Kumar M (2016) Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl Therm Eng 96:117–129. https://doi.org/10.1016/j.applthermaleng.2015.11.077

    Article  Google Scholar 

  19. Huu-Quan D et al (2020) Experimental investigation on the hydrothermal attributes of MWCNT/water nanofluid in the shell-side of shell and semi-circular tubes heat exchanger. Appl Therm Eng 176(January):108304. https://doi.org/10.1016/j.ijmecsci.2019.04.026

  20. Esmaeilzadeh E, Almohammadi H, Nokhosteen A, Motezaker A, Omrani AN (2014) Study on heat transfer and friction factor characteristics of γ-Al2O3/water through circular tube with twisted tape inserts with different thicknesses. Int J Therm Sci 82(1):72–83. https://doi.org/10.1016/j.ijthermalsci.2014.03.005

    Article  Google Scholar 

  21. Promvonge P, Skullong S (2020) Thermo-hydraulic performance in heat exchanger tube with V-shaped winglet vortex generator. Appl Therm Eng 164(April 2019):114424. https://doi.org/10.1016/j.applthermaleng.2019.114424

  22. Wu X, Zhang W, Gou Q, Luo Z, Lu Y (2014) Numerical simulation of heat transfer and fluid flow characteristics of composite fin. Int J Heat Mass Transf 75:414–424. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.087

    Article  Google Scholar 

  23. Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013) Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators. Int J Heat Mass Transf 56(1–2):475–487. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.004

    Article  Google Scholar 

  24. Omidi M, Farhadi M, Jafari M (2017) A comprehensive review on double pipe heat exchangers. Appl Therm Eng 110:1075–1090. https://doi.org/10.1016/j.applthermaleng.2016.09.027

    Article  Google Scholar 

  25. Singh SK, Kumar M, Kumar A, Gautam A, Chamoli S (2018) Thermal and friction characteristics of a circular tube fitted with perforated hollow circular cylinder inserts. Appl Therm Eng 130:230–241. https://doi.org/10.1016/j.applthermaleng.2017.10.090

    Article  Google Scholar 

  26. Hasanpour A, Farhadi M, Sedighi K (2014) A review study on twisted tape inserts on turbulent flow heat exchangers: the overall enhancement ratio criteria. Int Commun Heat Mass Transf 55:53–62. https://doi.org/10.1016/j.icheatmasstransfer.2014.04.008

    Article  Google Scholar 

  27. Singh SK, Kumar A (2019) An effect of twisted tape with nanofluid on the performance of double pipe heat exchanger: a comprehensive review. Int J Mech Prod Eng Res Dev 9(1):531–540. https://doi.org/10.24247/ijmperdfeb201951

    Article  MathSciNet  Google Scholar 

  28. Saikia SS et al (2020) Optimum number and arrangement of evacuated-tube solar collectors under various operating conditions. Sol Energy 30(September):123542. https://doi.org/10.1016/j.solener.2020.09.056

  29. Liu J, Gao J, Gao T, Shi X (2013) Heat transfer characteristics in steam-cooled rectangular channels with two opposite rib-roughened walls. Appl Therm Eng 50(1):104–111. https://doi.org/10.1016/j.applthermaleng.2012.05.003

    Article  Google Scholar 

  30. Naphon P (2006) Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert. Int Commun Heat Mass Transf 33(2):166–175. https://doi.org/10.1016/j.icheatmasstransfer.2005.09.007

    Article  Google Scholar 

  31. Ding T, Meng Z, Chen K, Fan G, Yan C (2020) Experimental study on flow characteristic of thimble heat exchanger applied to passive residual heat removal system of molten salt reactor. Appl Therm Eng 165(November 2019):114619. https://doi.org/10.1016/j.applthermaleng.2019.114619

  32. Han H, Li B, Shao W (2014) Multi-objective optimization of outward convex corrugated tubes using response surface methodology. Appl Therm Eng 70(1):250–262. https://doi.org/10.1016/j.applthermaleng.2014.05.016

    Article  Google Scholar 

  33. García A, Solano JP, Vicente PG, Viedma A (2012) The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils. Appl Therm Eng 35(1):196–201. https://doi.org/10.1016/j.applthermaleng.2011.10.030

    Article  Google Scholar 

  34. Rainieri S, Bozzoli F, Cattani L, Pagliarini G (2013) Compound convective heat transfer enhancement in helically coiled wall corrugated tubes. Int J Heat Mass Transf 59(1):353–362. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.037

    Article  Google Scholar 

  35. Kathait PS, Patil AK (2014) Thermo-hydraulic performance of a heat exchanger tube with discrete corrugations. Appl Therm Eng 66(1–2):162–170. https://doi.org/10.1016/j.applthermaleng.2014.01.069

    Article  Google Scholar 

  36. Li XW, Meng JA, Guo ZY (2009) Turbulent flow and heat transfer in discrete double inclined ribs tube. Int J Heat Mass Transf 52(3–4):962–970. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.027

  37. Pethkool S, Eiamsa-ard S, Kwankaomeng S, Promvonge P (2011) Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. Int Commun Heat Mass Transf 38(3):340–347. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.014

    Article  Google Scholar 

  38. Vicente PG, García A, Viedma A (2004) Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers. Int J Heat Mass Transf 47(4):671–681. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.005

    Article  Google Scholar 

  39. Buchlin JM (2002) Convective heat transfer in a channel with perforated ribs. Int J Therm Sci 41(4):332–340. https://doi.org/10.1016/S1290-0729(02)01323-6

    Article  Google Scholar 

  40. Nuntadusit C, Wae-hayee M, Bunyajitradulya A, Eiamsa-ard S (2012) Thermal visualization on surface with transverse perforated ribs. Int Commun Heat Mass Transf 39(5):634–639. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.001

    Article  Google Scholar 

  41. Mohammed HA, Hasan HA, Wahid MA (2013) Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts. Int Commun Heat Mass Transf 40(1):36–46. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.023

    Article  Google Scholar 

  42. Vermahmoudi Y, Peyghambarzadeh SM, Hashemabadi SH, Naraki M (2014) Experimental investigation on heat transfer performance of Fe 2 O 3/water nanofluid in an air-finned heat exchanger. Eur J Mech B/Fluids 44:32–41. https://doi.org/10.1016/j.euromechflu.2013.10.002

    Article  Google Scholar 

  43. Eiamsa-ard S, Promthaisong P, Thianpong C, Pimsarn M, Chuwattanakul V (2016) Influence of three-start spirally twisted tube combined with triple-channel twisted tape insert on heat transfer enhancement. Chem Eng Process Process Intensif 102:117–129. https://doi.org/10.1016/j.cep.2016.01.012

    Article  Google Scholar 

  44. Eiamsa-ard S et al (2018) Convective heat transfer and pressure drop of aqua based TiO2 nanofluids at different diameters of nanoparticles: data analysis and modeling with artificial neural network. Int J Therm Sci 96(April):106398. https://doi.org/10.1016/j.applthermaleng.2016.09.027

  45. Eiamsa-ard S, Promvonge P (2007) Enhancement of heat transfer in a circular wavy-surfaced tube with a helical-tape insert. Int Energy J 8(1):29–36

    Google Scholar 

  46. Eiamsa-Ard S, Nuntadusit C, Promvonge P (2013) Effect of twin delta-winged twisted-tape on thermal performance of heat exchanger tube. Heat Transf Eng 34(15):1278–1288. https://doi.org/10.1080/01457632.2013.793112

    Article  Google Scholar 

  47. Torii K, Kwak KM, Nishino K (2002) Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers. Int J Heat Mass Transf 45(18):3795–3801. https://doi.org/10.1016/S0017-9310(02)00080-7

    Article  Google Scholar 

  48. Chompookham T, Thianpong C, Kwankaomeng S, Promvonge P (2010) Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators. Int Commun Heat Mass Transf 37(2):163–169. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.012

    Article  Google Scholar 

  49. Zhang L et al (2017) Effects of the arrangement of triangle-winglet-pair vortex generators on heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins. Heat Mass Transf und Stoffuebertragung 53(1):127–139. https://doi.org/10.1007/s00231-016-1804-7

    Article  Google Scholar 

  50. Yadav V, Baghel K, Kumar R, Kadam ST (2016) Numerical investigation of heat transfer in extended surface microchannels. Int J Heat Mass Transf 93:612–622. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.023

    Article  Google Scholar 

  51. Muñoz-Esparza D, Sanmiguel-Rojas E (2011) Numerical simulations of the laminar flow in pipes with wire coil inserts. Comput Fluids 44(1):169–177. https://doi.org/10.1016/j.compfluid.2010.12.034

    Article  Google Scholar 

  52. Karakaya H, Durmuş A (2013) Heat transfer and exergy loss in conical spring turbulators. Int J Heat Mass Transf 60(1):756–762. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.054

    Article  Google Scholar 

  53. Nakhchi ME, Hatami M, Rahmati M (2020) Experimental investigation of heat transfer enhancement of a heat exchanger tube equipped with double-cut twisted tapes. Appl Therm Eng 180(April):115863. https://doi.org/10.1016/j.applthermaleng.2020.115863

  54. Hatami M, Ganji DD, Gorji-Bandpy M (2014) A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery. Renew Sustain Energy Rev 37:168–181. https://doi.org/10.1016/j.rser.2014.05.004

    Article  Google Scholar 

  55. Sheikholeslami M, Ganji DD, Gorji-Bandpy M (2016) Experimental and numerical analysis for effects of using conical ring on turbulent flow and heat transfer in a double pipe air to water heat exchanger. Appl Therm Eng 100:805–819. https://doi.org/10.1016/j.applthermaleng.2016.02.075

    Article  Google Scholar 

  56. Joardar A, Jacobi AM (2008) Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers. Int J Refrig 31(1):87–97. https://doi.org/10.1016/j.ijrefrig.2007.04.011

    Article  Google Scholar 

  57. Habchi C et al (2012) Enhancing heat transfer in vortex generator-type multifunctional heat exchangers. Appl Therm Eng 38:14–25. https://doi.org/10.1016/j.applthermaleng.2012.01.020

    Article  Google Scholar 

  58. Wu JM, Tao WQ (2008) Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: verification of field synergy principle. Int J Heat Mass Transf 51(5–6):1179–1191. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.032

    Article  Google Scholar 

  59. Zhou G, Feng Z (2014) Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes. Int J Therm Sci 78:26–35. https://doi.org/10.1016/j.ijthermalsci.2013.11.010

    Article  Google Scholar 

  60. Naik H, Tiwari S (2018) Effect of winglet location on performance of fin-tube heat exchangers with inline tube arrangement. Int J Heat Mass Transf 125:248–261. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.071

    Article  Google Scholar 

  61. Prasad PVD, Gupta AVSSKS, Deepak K (2015) Investigation of trapezoidal-cut twisted tape insert in a double pipe U-Tube heat exchanger using Al2O3/Water nanofluid. Procedia Mater Sci 10(Cnt 2014):50–63. https://doi.org/10.1016/j.mspro.2015.06.025

  62. Chandra Sekhara Reddy M, Vasudeva Rao V (2014) Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int Commun Heat Mass Transf 50:68–76. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.002

  63. Wu Z, Wang L, Sundén B (2013) Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Appl Therm Eng 60(1–2):266–274. https://doi.org/10.1016/j.applthermaleng.2013.06.051

    Article  Google Scholar 

  64. Demir H, Dalkilic AS, Kürekci NA, Duangthongsuk W, Wongwises S (2011) Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double-tube counter flow heat exchanger. Int Commun Heat Mass Transf 38(2):218–228. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.009

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledges the fellowship support given by the Ministry of Education (MoE), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Diwaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diwaker, M.K., Kumar, A. (2024). An Updated Review of Heat Transfer Enhancement Techniques in Tube-Type Heat Exchangers. In: Singh, K.M., Dutta, S., Subudhi, S., Singh, N.K. (eds) Fluid Mechanics and Fluid Power, Volume 1. FMFP 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-7827-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7827-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7826-7

  • Online ISBN: 978-981-99-7827-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics