Skip to main content
Log in

Thermophysical properties of phytosterols

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present research, the thermophysical properties of phytosterols were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC) in the range of 300–800 K. As a result, the areas of their thermal stability were established. The thermodynamic characteristics of melting and crystallization have been determined. For one of the samples, the specific heat was studied in the range 260–570 K. Comparison of the present results with the data available in the literature was carried out. The dependence of thermophysical properties on the composition and nature of phytosterols has been concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Demonty I, Ras RT, Van Der Knaap HCM, Duchateau GSMJE, Meijer L, Zock PL, et al. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J Nutr. 2009;139:271–84. https://doi.org/10.3945/jn.108.095125.

    Article  CAS  Google Scholar 

  2. Wester I. Cholesterol-lowering effect of plant sterols. Eur J Lipid Sci Technol. 2000;102:37–44. https://doi.org/10.1002/(sici)1438-9312(200001)102:1%3C37::aid-ejlt37%3E3.0.co;2-1.

    Article  CAS  Google Scholar 

  3. Fernandes P, Cabral JMS. Phytosterols: Applications and recovery methods. Bioresour Technol. 2007;98:2335–50. https://doi.org/10.1016/j.biortech.2006.10.006.

    Article  CAS  Google Scholar 

  4. Bot A. Phytosterols. Encycl Food Chem. 2018;54:225–8. https://doi.org/10.1016/B978-0-08-100596-5.21626-0.

    Article  Google Scholar 

  5. Vaikousi H, Lazaridou A, Biliaderis CG, Zawistowski J. Phase transitions, solubility, and crystallization kinetics of phytosterols and phytosterol-oil blends. J Agric Food Chem. 2007;55:1790–8. https://doi.org/10.1021/jf0624289.

    Article  CAS  Google Scholar 

  6. Oja V, Chen X, Hajaligol MR, Chan WG. Sublimation thermodynamic parameters for cholesterol, ergosterol, β-Sitosterol, and stigmasterol. J Chem Eng Data. 2009;54:730–4.

    Article  CAS  Google Scholar 

  7. Moreno-Calvo E, Temelli F, Cordoba A, Masciocchi N, Veciana J, Ventosa N. A new microcrystalline phytosterol polymorph generated using CO2-expanded solvents. Cryst Growth Des. 2014;14:58–68. https://doi.org/10.1021/cg401068n.

    Article  CAS  Google Scholar 

  8. Mel’nikov SM, Ten-Hoorn JWMS, Bertrand B. Can cholesterol absorption be reduced by phytosterols and phytostanols via a cocrystallization mechanism? Chem Phys Lipids. 2004;127:15–33. https://doi.org/10.1016/j.chemphyslip.2003.08.007.

    Article  CAS  Google Scholar 

  9. Acevedo NC, Franchetti D. Analysis of co-crystallized free phytosterols with triacylglycerols as a functional food ingredient. Food Res Int. 2016;85:104–12.

    Article  CAS  Google Scholar 

  10. Kawachi H, Tanaka R, Hirano M, Igarashi K, Ooshima H. Crystallization of β-sitosterol using a water-immiscible solvent hexane. J Chem Eng Japan. 2006;39:869–75. https://doi.org/10.1252/jcej.39.869.

    Article  CAS  Google Scholar 

  11. Christiansen LI, Rantanen JT, Von Bonsdorff AK, Karjalainen MA, Yliruusi JK. A novel method of producing a microcrystalline β-sitosterol suspension in oil. Eur J Pharm Sci. 2002;15:261–9. https://doi.org/10.1016/S0928-0987(01)00223-8.

    Article  CAS  Google Scholar 

  12. Nekrasova VB. Obtaining and using biologically active and related products from sulfate soap. Dr Eng Sci Diss. 2006;25:168.

    Google Scholar 

  13. Barriuso B, Ansorena D, Astiasarán I. Oxysterols formation: A review of a multifactorial process. J Steroid Biochem Mol Biol. 2017;169:39–45. https://doi.org/10.1016/j.jsbmb.2016.02.027.

    Article  CAS  Google Scholar 

  14. Rudzińska M, Przybylski R, Wąsowicz E. Products formed during thermo-oxidative degradation of phytosterols. JAOCS, J Am Oil Chem Soc. 2009;86:651–62. https://doi.org/10.1007/s11746-009-1397-0.

    Article  CAS  Google Scholar 

  15. Rudzinska M, Przybylski R, Zhao YY, Curtis JM. Sitosterol thermo-oxidative degradation leads to the formation of dimers, trimers and oligomers: A study using combined size exclusion chromatography/mass spectrometry. Lipids. 2010;45:549–58. https://doi.org/10.1007/s11745-010-3433-0.

    Article  CAS  Google Scholar 

  16. Gost R. 56340–2015. Organic liquids. Determination of water by coulometric Karl Fischer titration. Moscow Standartinform Publ. 2019;9:15.

    Google Scholar 

  17. Laakso PH. Determination of plant stanols and plant sterols in phytosterol enriched foods with a gas chromatographic-flame ionization detection method: NMKL collaborative study. J AOAC Int. 2014;97:1097–108. https://doi.org/10.5740/jaoacint.14-011.

    Article  CAS  Google Scholar 

  18. Rossi L, Ten-Hoorn JWMS, Melnikov SM, Velikov KP. Colloidal phytosterols: Synthesis, characterization and bioaccessibility. Soft Matter. 2010;6:928–36.

    Article  CAS  Google Scholar 

  19. Hohne GWH, Hemminger WF, Flammersheim HF. Differential scanning calorimetry. Berlin Heidelberg: Springer-Verlag; 2003.

    Book  Google Scholar 

  20. Drebushchak VA. Calibration coefficient of a heat-flow DSC. Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8. https://doi.org/10.1007/s10973-004-0586-1.

    Article  CAS  Google Scholar 

  21. Razuvaev GA, Latyaeva VN, Mar’in VP, Vyshinskaya LI, Korneva SP, Andrianov YA, et al. Thermal decomposition of organo-bielemental vanadium compounds Cp2V(ER3) (ER3 - GeEt3, SnEt3, CH2SiMe3, SeGeEt3). J Organomet Chem. 1982;225:233–44. https://doi.org/10.1016/S0022-328X(00)86826-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Shared Use Equipment Center for high–precision measuring in photonics (VNIIOFI) for NIR spectra and the Common Use Centre “New Materials and Resource-saving Technologies” (Research Institute for Chemistry of UNN) for XRPD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, A.O., Markin, A.V., Kushnir, S.R. et al. Thermophysical properties of phytosterols. J Therm Anal Calorim 147, 14175–14182 (2022). https://doi.org/10.1007/s10973-022-11618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11618-8

Keywords

Navigation