Skip to main content
Log in

Numerical investigation on effects of entropy generation and dispersion of hybrid nanoparticles on thermal and mass transfer in MHD Maxwell fluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, the Maxwell hybrid nanofluid flow passing over a pipe is discussed. We considered the base fluid as engine oil, while the hybrid nanofluids are copper and aluminum oxide. Irreversibility analysis and entropy generation have been examined, and the effects on physical parameters have also been examined. The mathematical model of this problem (nonlinear coupled equations) in cylindrical coordinates is solved by FEM. Began number and entropy generation are sketched for different values of parameters, and the effects of these parameters are discussed. The Deborah number is the measure of the elasticity of the fluid, and elasticity is the characteristics of the fluid due to which fluid avoids or tries to avoid momentum changes. Therefore, Deborah number has shown a decreasing behavior on the motion of the particles of both mono–nanoengine oil and hybrid nanoengine oil. Entropy generation is boosted when curvature is raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

De:

Deborah number

\(\Pr\) :

Prandtl number

Ec:

Eckert number

Ha:

Hartmann number

\({\text {Re}}\) :

Reynolds number

Sc:

Schmidt number

Br:

Brikmann number

uv :

Velocity components

T :

Fluid temperature

C :

Fluid concentration

n :

Temperature exponent or index

\(E_\mathrm{{G}}\) :

Entropy generation parameter

\(c_\mathrm{{p}}\) :

Specific heat

\(T_\mathrm{{w}}\) :

Surface temperature

\(T_{\infty }\) :

Ambient temperature

\(C_\mathrm{{w}}\) :

Surface concentration

\(C_{\infty }\) :

Ambient concentration

\(B_{0}\) :

Magnitude of magnetic induction

cl :

Constants

\(D^{*}\) :

Mass conductance

D :

Radius of cylinder

\(\lambda _{1}\) :

Fluid relaxation time

\(\tilde{K}\) :

Thermal conductivity

\(U_\mathrm{{w}}\) :

Stretching velocity

\(\theta\) :

Dimensionless temperature

\(\alpha\) :

Curvature parameter

\(\rho\) :

Density

\(\tilde{\sigma }\) :

Electrical conductivity

\(\nu\) :

Kinetic viscosity of fluid

\(\phi\) :

Dimensionless concentration

\(\mu\) :

Shear rate viscosity

\(\eta\) :

Similarity variable

\(\varphi\) :

Volume fraction

f:

Fluid

hnf:

Hybrid nanofluid

\(\mathrm{{s}}_{1} , \mathrm{{s}}_{2}\) :

Solid nanoparticles

References

  1. Awan AU, Abid S, Ullah N, Nadeem S. Magnetohydrodynamic oblique stagnation point flow of second grade fluid over an oscillatory stretching surface. Results Phys. 2020;18:103233.

    Google Scholar 

  2. Nazeer M, Hussain F, Shahzad Q, Khan MI, Kadry S, Chu YM. Perturbation solution of the multiphase flows of third grade dispersions suspended with hafnium and crystal particles. Surf Interfaces. 2020;22:100803.

    Google Scholar 

  3. Salawu SO, Fatunmbi EO, Ayanshola AM. On the diffusion reaction of fourth-grade hydromagnetic fluid flow and thermal criticality in a plane Couette medium. Results Eng. 2020;8:100169.

    Google Scholar 

  4. Zhao J. Axisymmetric convection flow of fractional Maxwell fluid past a vertical cylinder with velocity slip and temperature jump. Chin J Phys. 2020;67:501–11.

    CAS  Google Scholar 

  5. Mehmood R, Nadeem S, Saleem S, Akbar NS. Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate. J Taiwan Inst Chem Eng. 2017;74:49–58.

    CAS  Google Scholar 

  6. Ibrahim W, Gadisa G. Finite element solution of nonlinear convective flow of Oldroyd-B fluid with Cattaneo-Christov heat flux model over nonlinear stretching sheet with heat generation or absorption. Propuls Power Res. 2020;9(3):303–15.

    Google Scholar 

  7. Hayat T, Fetecau C, Abbas Z, Ali N. Flow of a Maxwell fluid between two side walls due to suddenly moved plate. Nonlinear Anal R World Appl. 2008;9:2288–95.

    Google Scholar 

  8. Vieru D, Fetecau C, Fetecau C. Flow of a viscoelastic fluid with fractional Maxwell model between two side walls perpendicular to a plate. Appl Math Comput. 2008;200:459–64.

    Google Scholar 

  9. Wang Y, Hayat T. Fluctuating fow of Maxwell fuid past a porous plate with variable suction. Nonlinear Anal R World Appl. 2008;9(4):1268–9.

    Google Scholar 

  10. Tan WC, Masuoka T. Stability analysis of a Maxwell fluid in a porous medium heated from below. Phys Lett A. 2007;360:454–60.

    CAS  Google Scholar 

  11. Ramesh G, Gireesha B. Infuence of heat source/sink on a Maxwell fuid over a stretching surface with convective boundary condition in the presence of nanoparticles. Ain Sham Eng J. 2014;5(3):991–8.

    Google Scholar 

  12. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Effect of \(Al_{2}O_{3}-Cu\)/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60.

    CAS  Google Scholar 

  13. Baghbanzadeh M, Rashidi A, Rashtchian D, Lotfi R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochimica Acta. 2012;549:87–94.

    CAS  Google Scholar 

  14. Takabi B, Shokouhmand H. Effects of \(Al_{2}O_{3} -Cu\)/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime. Int J Mod Phys C. 2015;26:1550047.

    CAS  Google Scholar 

  15. Hayat T, Nadeem S. Heat transfer enhancement with \(Ag-CuO\)/water hybrid nanofluid. Results Phys. 2017;7:2317–24.

    Google Scholar 

  16. Hayat T, Nadeem S, Khan AU. Rotating flow of \(Ag-CuO/H_{2}O\) hybrid nanofluid with radiation and partial slip boundary effects. Eur Phys J E. 2018;41:75.

    PubMed  Google Scholar 

  17. Subhani M, Nadeem S. Numerical analysis of micropolar hybrid nanofluid. Appl Nanosci. 2019;9:447–59.

    CAS  Google Scholar 

  18. Yousefi M, Dinarvand S, Eftekhari-Yazdi M, Pop I. Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. Int J Num Methods Heat Fluid Flow. 2018;28:1716–35.

    Google Scholar 

  19. Buongiorno J. Convective transport in nanofluids. J Heat Trans. 2006;128(3):240–50.

    Google Scholar 

  20. Buongiorno J, Hu W. Nanofluid coolants for advanced nuclear power plants. InProceedings of ICAPP 2005;5(5705): 15–19.

    Google Scholar 

  21. Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci. 2010;49(2):243–7.

    CAS  Google Scholar 

  22. Nield DA, Kuznetsov AV. The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int J Therm Sci. 2011;54(1–3):374–8.

    CAS  Google Scholar 

  23. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Trans. 2007;50(9–10):2002–18.

    CAS  Google Scholar 

  24. Rana P, Makkar V, Gupta G. Finite element modelling of MHD stefan blowing convective \(Ag-MgO\)/Water hybrid nanofluid induced by stretching cylinder utilizing non-Fourier/Ficks model. 2021;11(7):735.

    Google Scholar 

  25. Muhammad K, Hayat T, Alsaedi A, Ahmad B. Melting heat transfer in squeezing flow of basefluid (water), nanofluid (\(CNTs\,+\) water) and hybrid nanofluid (CNTs+ CuO+ water). J Therm Anal Calorim. 2021;143:1157–74.

    CAS  Google Scholar 

  26. Muhammad K, Hayat T, Alsaedi A, Ahmad B, Momani S. Mixed convective slip flow of hybrid nanofluid \((MWCNTs+Cu+\) Water), nanofluid (\(MWCNTs +\) Water) and base fluid (Water): a comparative investigation. J Therm Anal Calorim. 2021;143:1523–36.

    CAS  Google Scholar 

  27. Xie H, Jiang B, Liu B, Wang Q, Xu J, Pan F. An investigation on the tribological performances of the \(SiO_{2}-MoS_{2}\) hybrid nanofluids for magnesium alloy-steel contacts. Nanoscale Res Lett. 2016;11:329.

    PubMed  PubMed Central  Google Scholar 

  28. Nadeem S, Abbas N, Malik MY. Inspection of hybrid based nanofluid flow over a curved surface. Comput Methods Prog Biomed. 2020;189:105193.

    CAS  Google Scholar 

  29. Hayat T, Tanzila Nadeem S. Heat transfer enhancement with \(Ag-CuO\)/water hybrid nanofluid. Res Phys. 2017;7:2317–24.

    Google Scholar 

  30. Rehman A, Nadeem S. Mixed convection heat transfer in micropolar nanofluid over a vertical slender cylinder. Chin Phys Lett. 2012;29:124701.

    Google Scholar 

  31. Wang CY. Fluid flow due to a stretching cylinder. Phys Fluids. 1988;31:466–8.

    Google Scholar 

  32. Ishak A, Nazar R, Pop I. Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder. Appl Math Model. 2008;32:2059–66.

    Google Scholar 

  33. Gorla R, Chamkha AJ, Al-Meshaiei E. Melting heat transfer in a nanofluid boundary layer on a stretching circular cylinder. J Nav Archit Mar Eng. 2012;9(1):1–10.

    Google Scholar 

  34. Rasekh A, Ganji DD, Tavakoli S. Numerical solution for a nanofluid past over a stretching circular cylinder with non-unifom heat source. Front Heat Mass Trans. 2012;3:043003.

    CAS  Google Scholar 

  35. Bachok N, Ishak A. Flow and heat transfer over a stretching cylinder with prescribed surface heat flux. Malays J Math Sci. 2010;4(2):159–69.

    Google Scholar 

  36. Bejan A. A study of entropy generation in fundamental convective heat transfer. J Heat Trans. 1979;101(4):718.

    Google Scholar 

  37. Oliveski RDC, Macagnan MH, Copetti JB. Entropy generation and natural convection in rectangular cavities. Appl Therm Eng. 2009;29(8–9):1417–25.

    Google Scholar 

  38. Sohail M, Shah Z, Tassaddiq A, Kumam P, Roy P. Entropy generation in MHD Casson fluid flow with variable heat conductance and thermal conductivity over non-linear bi-directional stretching surface. Sci Rep. 2020;10:12530.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bhatti MM, Sheikholeslami M, Abbas T. Entropy Generation on the interaction of nanoparticles over a stretched surface with thermal radiation. Colloids Surf A Physicochem Eng Asp. 2019;570(5):368.

    CAS  Google Scholar 

  40. Mahian O, Oztop H, Pop I, Mahmud S, Wongwises S. Entropy generation between two vertical cylinders in the presence of MHD flow subjected to constant wall temperature. Int Commun Heat Mass Trans. 2013;44:87–92.

    Google Scholar 

  41. Butt AS, Ali A, Mehmood A. Numerical investigation of magnetic field effects on entropy generation in viscous flow over a stretching cylinder embedded in a porous medium. Energy. 2016;99:237–49.

    Google Scholar 

  42. Abu-Hijleh BAK. Natural convection heat transfer and entropy generation from a horizontal cylinder with baffles. ASME J Heat Trans. 2000;122(4):679–92.

    Google Scholar 

  43. Abu-Hijleh BAK. Natural convection and entropy generation from a cylinder with high conductivity fins. Num Heat Trans Part A. 2001;39:405–32.

    Google Scholar 

  44. Abu-Hijleh BAK. Entropy generation due to cross-flow heat transfer from a cylinder covered with an orthotropic porous layer. Heat Mass Trans. 2002;39:27–40.

    Google Scholar 

  45. Butt AS, Ali A, Mehmood A. Numerical investigation of magnetic field effects on entropy generation in viscous flow over a stretching cylinder embedded in a porous medium. Energy. 2016;99:237–49.

    Google Scholar 

  46. Butt AS, Ali A. Entropy analysis of magnetohydrodynamic flow and heat transfer due to a stretching cylinder. J Taiwan Inst Chem Eng. 2014;45(3):780–6.

    CAS  Google Scholar 

  47. Acharya N, Mondal H, Kundu PK. Spectral approach to study the entropy generation of radiative mixed convective couple stress fluid flow over a permeable stretching cylinder. Proc Inst Mech Eng Part C J MechEng Sci. 2020;203–210:1989–96.

    Google Scholar 

  48. Rashid M, Hayat T, Alsaedi A. Entropy generation in Darcy-Forchheimer flow of nanofluid with five nanoarticles due to stretching cylinder. Appl Nanosci. 2019;9:1649–59.

    CAS  Google Scholar 

  49. Butt AS, Tufail MN, Ali A, Dar A. Theoretical investigation of entropy generation effects in nanofluid flow over an inclined stretching cylinder. Int J Exergy. 2019;28(2):126–57.

    CAS  Google Scholar 

  50. Gul T, Waqas M, Noman W, Zaheer Z, Amiri IS. The carbon-nanotube nanofluid sprayed on an unsteady stretching cylinder together with entropy generation. Adv Mech Eng. 2019;11(12):1–11.

    Google Scholar 

  51. Arif U, Nawaz M, Alharbi SO, Saleem S. Investigation on the impact of thermal performance of fluid due to hybrid nano-structures. J Therm Anal Calorim. 2021;144:729–37.

    CAS  Google Scholar 

  52. Nawaz M, Arif U, Qureshi IH. Impact of temperature dependent diffusion coefficients on heat and mass transport in viscoelastic liquid using generalized Fourier theory. Physica Scripta. 2019;94:115206.

    CAS  Google Scholar 

  53. Arif U, Nawaz M, Rana Sh, Qureshi IH, Elmasry Y, Hussain S. Influence of chemical reaction on mass transport in yield stress exhibiting flow regime. Theor Found Chem Eng. 2020;54(6):1327–39.

    Google Scholar 

  54. Nawaz M, Arif U, Rana Sh, Alharbi S. Effects of generative/destructive chemical reaction on mass transport in Williamson liquid with variable thermophysical properties. J Eng Thermophys. 2019;28(4):591–602.

    Google Scholar 

  55. Qureshi IH, Nawaz M, Shahzad A. Numerical study of dispersion of nanoparticles in magnetohydrodynamic liquid with Hall and ion slip currents. AIP Adv. 2019;9(2):025219.

    Google Scholar 

  56. Nawaz M, Rana Sh, Qureshi IH. Computational fluid dynamic simulations for dispersion of nanoparticles in a magnetohydrodynamic liquid: a Galerkin finite element method. RSC Adv. 2018;8(67):38324–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nawaz M, Rana Sh, Qureshi IH, Hayat T. Three-dimensional heat transfer in the mixture of nanoparticles and micropolar MHD plasma with Hall and ion slip effects. AIP Adv. 2018;8(10):105109.

    Google Scholar 

  58. Qureshi IH, Nawaz M, Rana Sh, Nazir U, Chamkha AJ. Investigation of variable thermo-physical properties of viscoelastic rheology: a Galerkin finite element approach. AIP Adv. 2018;8(7):075027.

    Google Scholar 

  59. Qureshi IH, Nawaz M, Rana Sh, Zubair T. Galerkin finite element study on the effects of variable thermal conductivity and variable mass diffusion conductance on heat and mass transfer. Commun Theor Phys. 2018;70(1):049.

    CAS  Google Scholar 

  60. Alharbi SO, Nawaz M, Nazir U. Thermal analysis for the hybrid nanofluid past a cylinder exposed to magnetic field. AIP Adv. 2019;9(11):115022.

    Google Scholar 

  61. Naranjani B, Roohi E, Ebrahimi A. Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofluids. J Therm Anal Calorim. 2021;146(6):2549–60.

    CAS  Google Scholar 

  62. Ebrahimi A, Rikhtegar F, Sabaghan A, Roohi E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy. 2016;101:190–201.

    CAS  Google Scholar 

  63. Gholinia M, Gholinia S, Hosseinzadeh K, Ganji DD. Investigation on ethylene glycol nano fluid flow over a vertical permeable circular cylinder under effect of magnetic field. Results Phys. 2018;9:1525–33.

    Google Scholar 

  64. Sharma RP, Prakash O, Mishra SR, Rao PS. Hall current effect on molybdenum disulfide \((MoS2)\)-engine oil \((EO)\) based MHD nanofluid flow in a moving plate. Int J Ambient Energy. 2021. https://doi.org/10.1080/01430750.2021.2003239.

    Article  Google Scholar 

  65. Majeed A. Study of fluid flows around a stretching cylinder. In: International Islamic University Islamabad, Pakistan, PhD thesis. 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Arif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, M., Arif, U. Numerical investigation on effects of entropy generation and dispersion of hybrid nanoparticles on thermal and mass transfer in MHD Maxwell fluid. J Therm Anal Calorim 147, 13551–13560 (2022). https://doi.org/10.1007/s10973-022-11489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11489-z

Keywords

Navigation