Skip to main content
Log in

Fructose-derived hydrochar: combustion thermochemistry and kinetics assessments

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combustion behavior of fructose-derived hydrochar was investigated using a kinetic evaluation protocol that brings about novel elements related to the use of hydrochars as combustibles. The assessment procedure involves three steps implying the determination of the apparent activation energy (E) dependence on the conversion degree via model-free (isoconversional) methods, the estimation of the proposed kinetic scheme and corresponding kinetic parameters via nonlinear regression procedures, and the confirmation of the obtained results via different additional thermal analysis programs. The most probable kinetic scheme and corresponding kinetic parameters of the carbonaceous materials thermo-oxidation consists in five successive degradation processes following the Avrami–Erofeev model. The pair kinetic scheme–kinetic models leads to satisfactory agreement between experimental and calculated data and can be used in predictions of the conversion degree versus time development under different temperature programs. The used protocol is a first step to comparing hydrothermal carbonaceous materials’ combustion performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol. 2009;100:1413–8. https://doi.org/10.1016/j.biortech.2008.07.065.

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Hu YJ, Hao X, Peng P, Shi JY, Peng F, Sun RC. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: a review. Adv Compos Hybrid Mater. 2020;3:267–84. https://doi.org/10.1007/s42114-020-00158-0.

    Article  CAS  Google Scholar 

  3. Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci. 2005;31:171–92. https://doi.org/10.1016/j.pecs.2005.02.002.

    Article  CAS  Google Scholar 

  4. Visinescu D, Patrinoiu G, Tirsoaga A, Carp O. Polysaccharides routes: a new green strategy for metal oxides synthesis. In: Lichtfouse E, Schwarbauer J, Roberts D, editors. Environmental chemistry for a sustainable world. Dordrecht: Springer; 2012. p. 119–72.

    Chapter  Google Scholar 

  5. Patrinoiu G, Calderon-Moreno JM, Birjega R, Culita DC, Somacescu S, Musuc AM, Spataru T, Carp O. Sustainable one-pot integration of ZnO nanoparticles into carbon spheres: morphology, optical and electrochemical properties. Phys Chem Chem Phys. 2016;18:30794–807. https://doi.org/10.1039/C6CP05911B.

    Article  CAS  PubMed  Google Scholar 

  6. Saha A, Bharmoria P, Mondal A, Ghosh SC, Mahanty S, Panda AB. Generalized synthesis and evaluation of formation mechanism of metal oxide/sulfide@C hollow speres. J Mater Chem A. 2015;3:20297–304. https://doi.org/10.1039/C5TA05613F.

    Article  CAS  Google Scholar 

  7. Youssef AM, El-Sayed SM. Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym. 2018;193:19–27. https://doi.org/10.1016/j.carbpol.2018.03.088.

    Article  CAS  PubMed  Google Scholar 

  8. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, Emmerich KH. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2011;2:71–106. https://doi.org/10.4155/bfs.10.81.

    Article  CAS  Google Scholar 

  9. Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed. 2004;43:597–601. https://doi.org/10.1002/anie.200352386.

    Article  CAS  Google Scholar 

  10. Reza MT, Andert J, Wirth B, Busch D, Pielert J, Lynam JG, Mumme J. Hydrothermal carbonization of biomass for energy and crop production. Appl Bioenergy. 2014;1:11–29. https://doi.org/10.2478/apbi-2014-0001.

    Article  Google Scholar 

  11. Park SJ, Bae JS, Lee DW, Ra HW, Hong JC, Choi YC. Effects of hydrothermally pretreated sewage sludge on the stability and dispersibility of slurry fuel using pulverized coal. Energy Fuels. 2011;25:3934–9. https://doi.org/10.1021/ef200893p.

    Article  CAS  Google Scholar 

  12. Patrinoiu G, Dumitru R, Culita DC, Munteanu C, Birjega R, Calderon-Moreno JM, Cucos A, Pelinescu D, Chifiriuc MC, Bleotu C, Carp O. Self-assembled zinc oxide hierarchical structures with enhanced antibacterial properties from stacked chain-like zinc oxalate compounds. J Colloid Interface Sci. 2019;552:258–70. https://doi.org/10.1016/j.jcis.2019.05.051.

    Article  CAS  PubMed  Google Scholar 

  13. Robinson AL, Rhodes JS, Keith DW. Assessment of potential carbon dioxide reductions due to biomass–coal cofiring in the United States. Environ Sci Technol. 2003;37:5081–9. https://doi.org/10.1021/es034367q.

    Article  CAS  PubMed  Google Scholar 

  14. Aboulkas A, El Harfi K, El Bouadili A. Non-isothermal kinetic studies on co-processing of olive residue and polypropylene. Energy Conv Manag. 2008;49:3666–71. https://doi.org/10.1016/j.enconman.2008.06.029.

    Article  CAS  Google Scholar 

  15. Demirbas A. Sustainable cofiring of biomass with coal. Energy Convers Manag. 2003;44:1465–79. https://doi.org/10.1016/S0196-8904(02)00144-9.

    Article  CAS  Google Scholar 

  16. Arenillas A, Rubiera F, Arias B, Pis JJ, Faúndez JM, Gordon AL, Garcia XA. A TG/DTA study on the effect of coal blending on ignition behaviour. J Therm Anal Calorim. 2004;76:603–14. https://doi.org/10.1023/B:JTAN.0000028039.72613.73.

    Article  CAS  Google Scholar 

  17. Paraschiv C, Jurca B, Ianculescu A, Carp O. Synthesis of nanosized bismuth ferrite (BiFeO3) by a combustion method starting from Fe(NO3)3·9H2O-Bi(NO3)3·9H2O-glycine or urea systems. J Therm Anal Calorim. 2008;94:411–6. https://doi.org/10.1007/s10973-008-9145-5.

    Article  CAS  Google Scholar 

  18. Budrugeac P, Cucos A, Miu L. The use of thermal analysis methods for authentication and conservation state determination of historical and/or cultural objects manufactured from leather. J Therm Anal Calorim. 2011;104:439–50. https://doi.org/10.1007/s10973-010-1183-0.

    Article  CAS  Google Scholar 

  19. Liu ZG, Quek A, Hoekman SK, Srinivasan MP, Balasubramanian R. Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresour Technol. 2012;123:646–62. https://doi.org/10.1016/j.biortech.2012.06.063.

    Article  CAS  PubMed  Google Scholar 

  20. Parshetti GK, Hoekman SK, Balasubramanian R. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour Technol. 2013;135:683–9. https://doi.org/10.1016/j.biortech.2012.09.042.

    Article  CAS  PubMed  Google Scholar 

  21. Yang W, Wang H, Zhang M, Zhu J, Zhou J, Wu S. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo. Bioresour Technol. 2016;205:199–204. https://doi.org/10.1016/j.biortech.2016.01.068.

    Article  CAS  PubMed  Google Scholar 

  22. Patranoiu G, Calderon-Moreno JM, Birjega R, Carp O. Solid vs. hollow oxide spheres obtained by hydrothermal carbonization of various types of carbohydrates. RSC Adv. 2015;40:31768–71. https://doi.org/10.1039/C5RA03447G.

    Article  CAS  Google Scholar 

  23. Sevilla M, Fuertes AB. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon. 2009;47:2281–9. https://doi.org/10.1016/j.carbon.2009.04.026.

    Article  CAS  Google Scholar 

  24. Patrinoiu G, Calderon-Moreno JM, Somacescu S, Spataru N, Musuc AM, Ene R, Birjega R, Carp O. Carbonaceous spheres: versatile intermediary of metal oxide spherical structures synthesis. Eur J Inorg Chem. 2014;2014:1010–9. https://doi.org/10.1002/ejic.201301263.

    Article  CAS  Google Scholar 

  25. Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol. 2011;102:9255–60. https://doi.org/10.1016/j.biortech.2011.06.099.

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Lin Q, He R, Zhao X, Li G. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour Technol. 2017;241:236–43. https://doi.org/10.1016/j.biortech.2017.04.012.

    Article  CAS  PubMed  Google Scholar 

  27. Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J. Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng. 2013;1:1092–101. https://doi.org/10.1021/sc400118f.

    Article  CAS  Google Scholar 

  28. Basso D, Patuzzi F, Castello D, Baratieri M, Rada EC, Weiss-Hortala E, Fiori L. Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag. 2016;47:114–21. https://doi.org/10.1016/j.wasman.2015.05.013.

    Article  CAS  PubMed  Google Scholar 

  29. Fan F, Yang Z, Xing X. Study on the pyrolysis properties of corn straw by TG–FTIR and TG–GC/MS. J Therm Anal Calorim. 2021;143:3783–91. https://doi.org/10.1007/s10973-020-09778-6.

    Article  CAS  Google Scholar 

  30. Mäkelä M, Benavente V, Fullana A. Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties. Appl Energy. 2015;155:576–84. https://doi.org/10.1016/j.apenergy.2015.06.022.

    Article  CAS  Google Scholar 

  31. Azharul Islam M, Kabir G, Asif M, Hameed BH. Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresour Technol. 2015;194:14–20. https://doi.org/10.1016/j.biortech.2015.06.094.

    Article  CAS  Google Scholar 

  32. Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy. 2010;97:141–8. https://doi.org/10.1016/j.apenergy.2009.08.004.

    Article  CAS  Google Scholar 

  33. Parshetti GK, Liu Z, Jain A, Srinivasan MP, Balasubramanian R. Hydrothermal carbonization of sewage sludge for energy production with coal. Fuel. 2013;111:201–10. https://doi.org/10.1016/j.fuel.2013.04.052.

    Article  CAS  Google Scholar 

  34. He C, Giannis A, Wang JY. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl Energy. 2013;111:257–66. https://doi.org/10.1016/j.apenergy.2013.04.084.

    Article  CAS  Google Scholar 

  35. Yu LJ, Wang S, Jiang XM, Wang N, Zhang CQ. Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim. 2008;93(2):611–7. https://doi.org/10.1007/s10973-007-8274-6.

    Article  CAS  Google Scholar 

  36. Lin Y, Ma X, Peng X, Hu S, Yu Z, Fang S. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Appl Therm Eng. 2015;91:574–82. https://doi.org/10.1016/j.applthermaleng.2015.08.064.

    Article  CAS  Google Scholar 

  37. Zhao M, Li B, Cai JX, Liu C, McAdam KG, Zhang K. Thermal & chemical analyses of hydrothermally derived carbon materials from corn starch. Fuel Proc Technol. 2016;153:43–9. https://doi.org/10.1016/j.fuproc.2016.08.002.

    Article  CAS  Google Scholar 

  38. Patranoiu G, Hussein MD, Calderon-Moreno JM, Atkinson I, Musuc AM, Ion RN, Cimpean A, Chifiriuc MC, Carp O. Eco-friendly synthesized spherical ZnO materials: effect of the core-shell to solid morphology transition on antimicrobial activity. Mater Sci Eng C. 2019;97:438–50. https://doi.org/10.1016/j.msec.2018.12.063.

    Article  CAS  Google Scholar 

  39. Wilk M, Sliz M, Gajek M. The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp. Renew Energy. 2021;177:216–28. https://doi.org/10.1016/j.renene.2021.05.112.

    Article  Google Scholar 

  40. Stobernacka N, Mayer F, Malek C, Bhandari R. Evaluation of the energetic and environmental potential of the hydrothermal carbonization of biowaste: modeling of the entire process chain. Bioresour Technol. 2020;318:124038. https://doi.org/10.1016/j.biortech.2020.124038.

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. https://doi.org/10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  42. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  43. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58. https://doi.org/10.1023/A:1010167626551.

    Article  CAS  Google Scholar 

  44. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95. https://doi.org/10.1002/polc.5070060121.

    Article  Google Scholar 

  45. Ozawa TA. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  46. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523. https://doi.org/10.6028/jres.070A.043.

    Article  Google Scholar 

  47. Galwey AK, Brown ME. Kinetic background to thermal analysis and calorimetry. In: Handbook of thermal analysis and calorimetry. Principles and practice. vol. 1. Elsevier; 1998, Ch. 3.

  48. Patranoiu G, Calderon-Moreno JM, Chifiriuc CM, Saviuc C, Barjega R, Carp O. Tunable ZnO spheres with high anti-biofilm and antibacterial activity via a simple green hydrothermal route. J Colloid Interface Sci. 2016;462:64–74. https://doi.org/10.1016/j.jcis.2015.09.059.

    Article  CAS  Google Scholar 

  49. Patrinoiu G, Rodriguez JR, Wang Y, Birjega R, Osiceanu P, Musuc AM, Qi Z, Wang H, Pol VG, Calderon-Moreno JM, Carp O. Versatile by design: hollow Co3O4 architectures for superior lithium storage prepared by alternative green Pechini method. Appl Surface Sci. 2020;510: 145431. https://doi.org/10.1016/j.apsusc.2020.145431.

    Article  CAS  Google Scholar 

  50. Kang S, Li X, Fan J, Chang J. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-Xylose, and wood meal. Ind Eng Chem Res. 2012;51:9023–31. https://doi.org/10.1021/ie300565d.

    Article  CAS  Google Scholar 

  51. de Oliveira Silva J, Filho GR, da Silva Meireles C, Ribeiro SD, Vieira JG, da Silva CV, Cerqueira DA. Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlândia-MG, Brazil. Thermochim Acta. 2012;528:72–5. https://doi.org/10.1016/j.tca.2011.11.010.

    Article  CAS  Google Scholar 

  52. Patrinoiu G, Calderon-Moreno JM, Culita DC, Birjega R, Ene R, Carp O. Carbonaceous spheres-an unusual template for solid metal oxide mesoscale spheres: application to ZnO spheres. J Solid State Chem. 2014;202:291–9. https://doi.org/10.1016/j.jssc.2013.03.045.

    Article  CAS  Google Scholar 

  53. Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett. 2006;88:163106. https://doi.org/10.1063/1.2196057.

    Article  CAS  Google Scholar 

  54. Hurtta M, Pitkänen I, Knuutinen J. Melting behaviour of D-sucrose, D-glucose and D-fructose. Carbohydr Res. 2004;339:2267–73. https://doi.org/10.1016/j.carres.2004.06.022.

    Article  CAS  PubMed  Google Scholar 

  55. Abbas-Ghaleb R. Boron alumina: qualitative investigation of the surface acidity by FTIR measurements of CO adsorption. SN Appl Sci. 2020;2(12):2154. https://doi.org/10.1007/s42452-020-03793-w.

    Article  CAS  Google Scholar 

  56. Evans RJ, Wang D, Agblevor FA, Chum HL, Baldwin SD. Mass spectrometric studies of the thermal decomposition of carbohydrates using 13C-labeled cellulose and glucose. Carbohydr Res. 1996;281:219–35. https://doi.org/10.1016/0008-6215(95)00355-x.

    Article  CAS  PubMed  Google Scholar 

  57. Carlson TR, Jae J, Lin YC, Tompsett GA, Huber GW. Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. J Catal. 2010;270:110–24. https://doi.org/10.1016/j.jcat.2009.12.013.

    Article  CAS  Google Scholar 

  58. Modugno P, Titirici MM. Influence of reaction conditions on hydrothermal carbonization of fructose. Chemsuschem. 2021;14:5271–82. https://doi.org/10.1002/cssc.202101348.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Zahid I, Danial A, Minaret J, Cao Y, Dutta A. Hydrothermal carbonization of miscanthus: processing, properties, and synergistic Co-combustion with lignite. Energy. 2021;225:120200. https://doi.org/10.1016/j.energy.2021.120200.

    Article  CAS  Google Scholar 

  60. Guo F, He Y, Hassanpour A, Gardy J, Zhong Z. Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy. 2020;197: 117147. https://doi.org/10.1016/j.energy.2020.117147.

    Article  CAS  Google Scholar 

  61. Budrugeac P, Segal E. Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid–gas reactions. Int J Chem Kinet. 2001;39:564–73. https://doi.org/10.1002/kin.1052.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by OC and AMM; Formal analysis and investigation were contributed by AMM, GP, PB, AC, RD, and JC-M; Writing—original draft preparation was contributed by OC, PB and AMM; Writing—review and editing was contributed by AMM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adina Magdalena Musuc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 2307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musuc, A.M., Patrinoiu, G., Budrugeac, P. et al. Fructose-derived hydrochar: combustion thermochemistry and kinetics assessments. J Therm Anal Calorim 147, 12805–12814 (2022). https://doi.org/10.1007/s10973-022-11474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11474-6

Keywords

Navigation