Skip to main content
Log in

Flame retardant thermoplastic polyurethane based on a combination of chitosan and phosphotungstic acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermoplastic polyurethane was increasingly used in many applications, and reducing its fire hazard was a very important research direction. In this paper, CS and PWA and their combinations were added to TPU as flame restardants. The flame restardant and smoke suppression performance of the samples after adding CS/PWA combination was investigated by CCT, SDT, LOI, and TG-IR. The CCT results showed that the combination of CS/PWA could effectively reduce the heat release rate of TPU, and the pHRR value could be reduced by 76%; the TSR value would be reduced by 50%. Moreover, the THR value could be reduced by 35.4%. The combustion time could be prolonged, and the LOI value could be increased from 21% to 24.8%. The SDT results showed that CS/PWA combination could effectively reduce the smoke production in the test. The structure of the char residue layer of TPU composites became more dense and continuous. The reduction of MDI generation from TPU thermal decomposition was demonstrated by GC–MS, and it was further demonstrated that CS/PWA could promote the formation of the dense char layer and protected the matrix material. The mechanical performance tests proved that the CS/PWA combination had little effect on the structure of the TPU material. The above results indicate that the CS/PWA combination had a good prospect in reducing the fire hazard of TPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kong Q, Zhu H, Huang S, Wu T, Zhu F, Zhang Y, et al. Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites. Thermochim Acta. 2022. https://doi.org/10.1016/j.tca.2021.179112.

    Article  Google Scholar 

  2. Kong Q, Zhu H, Fan J, Zheng G, Zhang C, Wang Y, et al. Boosting flame retardancy of epoxy resin composites through incorporating ultrathin nickel phenylphosphate nanosheets. J Appl Polym Sci. 2020. https://doi.org/10.1002/app.50265.

    Article  Google Scholar 

  3. Tabuani D, Bellucci F, Terenzi A, Camino G. Flame retarded Thermoplastic Polyurethane (TPU) for cable jacketing application. Polym Degrad Stab. 2012;97(12):2594–601. https://doi.org/10.1016/j.polymdegradstab.2012.07.011.

    Article  CAS  Google Scholar 

  4. Jiao C, Zhao X, Song W, Chen X. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim. 2015;120(2):1173–81. https://doi.org/10.1007/s10973-014-4377-z.

    Article  CAS  Google Scholar 

  5. Bourbigot S, Samyn F, Turf T, Duquesne S. Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants. Polym Degrad Stab. 2010;95(3):320–6. https://doi.org/10.1016/j.polymdegradstab.2009.11.011.

    Article  CAS  Google Scholar 

  6. Chen X, Jiang Y, Jiao C. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater. 2014;266:114–21. https://doi.org/10.1016/j.jhazmat.2013.12.025.

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Huo L, Jiao C, Li S. TG–FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J Anal Appl Pyrol. 2013;100:186–91. https://doi.org/10.1016/j.jaap.2012.12.017.

    Article  CAS  Google Scholar 

  8. Yang H, Yu B, Xu X, Bourbigot S, Wang H, Song P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020;22(7):2129–61. https://doi.org/10.1039/d0gc00449a.

    Article  CAS  Google Scholar 

  9. Costes L, Laoutid F, Brohez S, Dubois P. Bio-based flame retardants: when nature meets fire protection. Mater Sci Eng R Rep. 2017;117:1–25. https://doi.org/10.1016/j.mser.2017.04.001.

    Article  Google Scholar 

  10. Piao J, Ren J, Wang Y, Feng T, Wang Y, Liu W, et al. Green P-N coating by mechanochemistry: efficient flame retardant for cotton fabric. Cellulose. 2022;29(4):2711–29. https://doi.org/10.1007/s10570-022-04436-6.

    Article  CAS  Google Scholar 

  11. Malucelli G. Flame-retardant systems based on Chitosan and its derivatives: state of the art and perspectives. Molecules. 2020. https://doi.org/10.3390/molecules25184046.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lecouvet B, Sclavons M, Bourbigot S, Bailly C. Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polym Degrad Stab. 2013;98(10):1993–2004. https://doi.org/10.1016/j.polymdegradstab.2013.07.013.

    Article  CAS  Google Scholar 

  13. Lecouvet B, Sclavons M, Bailly C, Bourbigot S. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polym Degrad Stab. 2013;98(11):2268–81. https://doi.org/10.1016/j.polymdegradstab.2013.08.024.

    Article  CAS  Google Scholar 

  14. Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, et al. Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab. 2013;98(2):627–34. https://doi.org/10.1016/j.polymdegradstab.2012.11.006.

    Article  CAS  Google Scholar 

  15. Chen Y, Peng H, Li J, Xia Z, Tan H. A novel flame retardant containing phosphorus, nitrogen, and sulfur. J Therm Anal Calorim. 2013;115(2):1639–49. https://doi.org/10.1007/s10973-013-3461-0.

    Article  CAS  Google Scholar 

  16. Negm NA, Hefni HHH, Abd-Elaal AAA, Badr EA, Abou Kana MTH. Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol. 2020;152:681–702. https://doi.org/10.1016/j.ijbiomac.2020.02.196.

    Article  CAS  PubMed  Google Scholar 

  17. Wang A, Zhu Q, Xing Z. Multifunctional quaternized chitosan@surface plasmon resonance Ag/N-TiO2 core-shell microsphere for synergistic adsorption-photothermal catalysis degradation of low-temperature wastewater and bacteriostasis under visible light. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2020.124781.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Z, Ma Z, Leng Q, Wang Y. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions. Int J Biol Macromol. 2019;140:303–10. https://doi.org/10.1016/j.ijbiomac.2019.08.049.

    Article  CAS  PubMed  Google Scholar 

  19. Shi X, Jiang S, Hu Y, Peng X, Yang H, Qian X. Phosphorylated chitosan-cobalt complex: a novel green flame retardant for polylactic acid. Polym Adv Technol. 2018;29(2):860–6. https://doi.org/10.1002/pat.4196.

    Article  CAS  Google Scholar 

  20. Qu H, Liu C, Wu W, Chen L, Xu J. Using cone calorimeter to study thermal degradation of flexible PVC filled with zinc ferrite and Mg(OH)2. J Therm Anal Calorim. 2013;115(2):1081–7. https://doi.org/10.1007/s10973-013-3434-3.

    Article  CAS  Google Scholar 

  21. Jiao C, Dong J, Zhang C, Zhuo J, Chen X. Synthesis and properties of a phosphate ester as curing agent in an epoxy resin system. Iran Polym J. 2014;23(8):591–8. https://doi.org/10.1007/s13726-014-0253-8.

    Article  CAS  Google Scholar 

  22. Morgan AB, Bundy M. Cone calorimeter analysis of UL-94 V-rated plastics. Fire Mater. 2007;31(4):257–83.

    Article  CAS  Google Scholar 

  23. Janowska G, Kucharska-Jastrząbek A, Rybiński P. Thermal stability, flammability and fire hazard of butadiene-acrylonitrile rubber nanocomposites. J Therm Anal Calorim. 2011;103(3):1039–46. https://doi.org/10.1007/s10973-010-1282-y.

    Article  CAS  Google Scholar 

  24. Liu X, Gu X, Sun J, Zhang S. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohydr Polym. 2017;167:356–63. https://doi.org/10.1016/j.carbpol.2017.03.011.

    Article  CAS  PubMed  Google Scholar 

  25. Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34(10):1068–133. https://doi.org/10.1016/j.progpolymsci.2009.06.002.

    Article  CAS  Google Scholar 

  26. Jiao C, Zhuo J, Chen X, Li S, Wang H. Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid. J Therm Anal Calorim. 2012;114(1):253–9. https://doi.org/10.1007/s10973-012-2867-4.

    Article  CAS  Google Scholar 

  27. Feng Z, Guo J, Yan Y, Sun J, Zhang S, Wang W, et al. Modification of mesoporous silica with phosphotungstic acid and its effects on the combustion and thermal behavior of polylactic acid composites. Polym Degrad Stab. 2019;160:24–34. https://doi.org/10.1016/j.polymdegradstab.2018.12.004.

    Article  CAS  Google Scholar 

  28. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36(3):203–15.

    Article  CAS  Google Scholar 

  29. Shi X, Jiang S, Zhu J, Li G, Peng X. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions. RSC Adv. 2018;8(18):9985–95.

    Article  CAS  Google Scholar 

  30. Ge H, Tang G, Hu WZ, Wang BB, Pan Y, Song L, et al. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J Hazard Mater. 2015;294:186–94. https://doi.org/10.1016/j.jhazmat.2015.04.002.

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Zhang D, Zhang Y, Cai W, Yao C, Hu Y, et al. Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane. J Hazard Mater. 2019;362:482–94. https://doi.org/10.1016/j.jhazmat.2018.09.009.

    Article  CAS  PubMed  Google Scholar 

  32. Chen XL, Wang K, Gu YX, Jiao CM, Liang HJ, Li SX. Influence of nickel citrate in flame retardant thermoplastic polyurethane elastomer composites based on ammonium polyphosphate. Express Polym Lett. 2021;15(5):445–58. https://doi.org/10.3144/expresspolymlett.2021.38.

    Article  CAS  Google Scholar 

  33. Yu B, Yuen ACY, Xu X, Zhang ZC, Yang W, Lu H, et al. Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability. J Hazard Mater. 2021;401:123342. https://doi.org/10.1016/j.jhazmat.2020.123342.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51776101), the Natural Science Foundation of Shandong Province (ZR2021MB083), and the Shandong Provincial Major Science and Technology Innovation Program (2019JZZY010821).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanmei Jiao or Xilei Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, Y., Ren, J. et al. Flame retardant thermoplastic polyurethane based on a combination of chitosan and phosphotungstic acid. J Therm Anal Calorim 147, 12791–12803 (2022). https://doi.org/10.1007/s10973-022-11458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11458-6

Keywords

Navigation