Skip to main content
Log in

Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Flame retardant epoxy resin (FREP) were synthesized from phosphoric acid and bisphenol A epoxy resin (BAEP). The structure of the FREP was characterized using FTIR and 31P NMR. Then, several FREP/BAEP mass ratios were used to obtain materials with different phosphorus contents. The properties of the thermosetting materials were evaluated by limiting oxygen index, UL 94, cone calorimeter test, and thermogravimetric analysis. The results showed that the heat release rates and smoke production rates decreased greatly, and char residue increased with the increasing of FREP. It indicates that good flame retardant properties are related to the formation of a protective phosphorus-rich char layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Hodgkin JH, Simon GP. Thermoplastic toughening of epoxy resins: a critical review. Polym Adv Technol. 1998;9:3–10.

    Article  CAS  Google Scholar 

  2. Chen WY, Wang YZ. Thermal and flame retardation properties of melamine phosphate-modified epoxy resins. J Polym Res. 2004;11:109–17.

    Article  Google Scholar 

  3. Formicola C, De Fenzo A. Synergistic effects of zinc borate and aluminium trihydroxide on flammability behaviour of aerospace epoxy system. Express Polym Lett. 2009;3:376–84.

    Article  CAS  Google Scholar 

  4. Chen L, Wang YZ. A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol. 2010;21:1–26.

    Google Scholar 

  5. Weil ED, Levchik S. A review of current flame retardant systems for epoxy resins. J Fire Sci. 2004;22:25–40.

    Article  CAS  Google Scholar 

  6. Wang CS, Shieh JY. Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenzce 1,2 oxaphosphorin-6-yl)1,4-benzenediol. Polymer. 1998;39:5819–26.

    Article  CAS  Google Scholar 

  7. Levchik SV, Weil ED. Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int. 2004;53:1901–29.

    Article  CAS  Google Scholar 

  8. Wu Q, Bao JW, Zhang C, Liang R, Wang B. The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypaper composites. J Therm Anal Calorim. 2011;103:237–42.

    Article  CAS  Google Scholar 

  9. Gao M, Wu W, Yan Y. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J Therm Anal Calorim. 2009;95:605–8.

    Article  CAS  Google Scholar 

  10. Hergenrother PM, Thompson CM. Flame retardant aircraft epoxy resins containing phosphorus. Polymer. 2005;46:5012–24.

    Article  CAS  Google Scholar 

  11. Wu Q, Lü JP. Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins. Polym Int. 2003;52:1326–31.

    Article  CAS  Google Scholar 

  12. Gravalos KG. Synthesis and flammability of copolyisophthalamides. I. with phosphorus groups in the main chain. J Polym Sci A. 1992;30:2521–9.

    Article  CAS  Google Scholar 

  13. Liu YL, Jeng RJ. Triphenylphosphine oxide-based bismaleimide and poly(bismaleimide): synthesis, characterization, and properties. J Polym Sci A. 2001;39:1716–25.

    Article  CAS  Google Scholar 

  14. Chen XL, Jiao CM. Thermal degradation characteristics of a novel flame retardant coating using TG–IR technique. Polym Degrad Stab. 2008;93:2222–5.

    Article  CAS  Google Scholar 

  15. Wang QF, Shi WF. Synthesis and thermal decomposition of a novel hyperbranched polyphosphate ester used for flame retardant systems. Polym Degrad Stab. 2006;91:1289–94.

    Article  CAS  Google Scholar 

  16. Wang X, Hu Y. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer. 2010;51:2435–45.

    Article  CAS  Google Scholar 

  17. Almeras X, Le Bras M. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stab. 2003;82:325–31.

    Article  CAS  Google Scholar 

  18. Chen XL, Jiao CM. Flame retardant epoxy resins from bisphenol-A epoxy cured with hyperbranched polyphosphate ester. J Polym Res. 2011;18:2229–37.

    Google Scholar 

  19. Sen AK, Kumar S. Coir-fiber-based fire retardant nano filler for epoxy composites. J Therm Anal Calorim. 2010;101:265–71.

    Article  CAS  Google Scholar 

  20. Durga G, Narula AK. Curing and thermal behaviour of diamide–diimide–diamines based on l-phenylalanine with epoxy blends containing phosphorus/silicon. J Therm Anal Calorim. 2012;109:345–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Basic Research Program of China (973 Program, No. 2012CB724609), National Natural Science Foundation of China (No. 51206084) and the Out-standing Young Scientist Research Award Fund from Shandong Province (BS2011CL018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, C., Zhuo, J., Chen, X. et al. Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid. J Therm Anal Calorim 114, 253–259 (2013). https://doi.org/10.1007/s10973-012-2867-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2867-4

Keywords

Navigation