Skip to main content
Log in

Thermal behavior of gamma-irradiated urea–formaldehyde composites based on the differently activated montmorillonite K10

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work investigated the thermal characteristics of irradiated composite materials formulated on the urea–formaldehyde resin (UF) and differently activated montmorillonite (K10). UF resin with molar ratio F:U  =  0.8 was synthesized in situ with differently activated K10. K10 was activated by heating at 400 °C, with sulfuric acid (H2SO4) without and with magnetic stirring. The samples are marked with TK10, AK10, ASK10, UF/TK10, UF/AK10, and UF/ASK10, respectively. The samples were identified by applying X-ray diffraction analysis and thermal methods (TGA and DTA), supported by data from Fourier Transform Infrared spectroscopy and scanning electron microscopy. The degree of activation was determined by measuring specific surface area (SSA) using Sear’s method. Measurement of the value for SSA shows that the sample TK10 has the highest value (317 m2 g−1) among the other two samples, (for AK10 = 183 m2 g−1 and ASK10 = 167 m2 g−1). The modified UF/AK10 composite is more thermally stable than other two modified UF/K10 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Park BD, Causin V. Crystallinity and domain size of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Eur Polym J. 2013;49:532–7. https://doi.org/10.1016/j.eurpolymj.2012.10.029.

    Article  CAS  Google Scholar 

  2. Dunky M. Urea-formaldehyde (UF) Adhesive Resins for Wood. Int J Adhes Adhes. 1998;18:95–107. https://doi.org/10.1016/S0143-7496(97)00054-7.

    Article  CAS  Google Scholar 

  3. Conner AH. Urea-formaldehyde adhesive resins. In: Salamone JC, editor. Polymeric materials encyclopedia. New York: CRC Press; 1996.

    Google Scholar 

  4. Jeong B, Park BD. Effect of molecular weight of urea-formaldehyde resins on their cure kinetics, interphase, penetration into wood, and adhesion in bonding wood. Wood Sci Technol. 2019;53:665–85. https://doi.org/10.1007/s00226-019-01092-1.

    Article  CAS  Google Scholar 

  5. Jovanović V, Samaržija-Jovanović S, Petković B, Miličević Z, Marković G, Marinović-Cincović M. Biocomposites based on cellulose and starch modified urea-formaldehyde resin: hydrolytic, thermal, and radiation stability. Polym Compos. 2019;40:1287–94. https://doi.org/10.1002/pc.24849.

    Article  CAS  Google Scholar 

  6. Pizzi A, George B, Zanetti M, Méausoone P. Rheometry of aging of colloidal melamine-urea-formaldehyde polycondensates. J Appl Polym Sci. 2005;96:655–9. https://doi.org/10.1002/APP.21492.

    Article  CAS  Google Scholar 

  7. Kim JW, Carlborn K, Matuana LM, Heiden P. Thermoplastic modification of urea–formaldehyde wood adhesives to improve moisture resistance. J Appl Polym Sci. 2006;101:4222–9. https://doi.org/10.1002/app.23654.

    Article  CAS  Google Scholar 

  8. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. Synthesis of nylon 6-clay hybrid. J Mater Res. 1993;8(5):1179–84. https://doi.org/10.1557/JMR.1993.1179.

    Article  CAS  Google Scholar 

  9. Bauer F, Glasel HJ, Hartmann E, Langguth H, Hinterwaldner R. Functionalized inorganic/organic nanocomposites as new basic raw materials for adhesives and sealants. Int J Adhes Adhes. 2004;24:519–22. https://doi.org/10.1016/j.ijadhadh.2004.02.001.

    Article  CAS  Google Scholar 

  10. Lee WF, Yang LG. Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly (sodium acrylate) and montmorillonite nanocomposite superabsorbents. J Appl Polym Sci. 2004;92(5):3422–9. https://doi.org/10.1002/app.20370.

    Article  CAS  Google Scholar 

  11. Moore DM, Reynolds RC Jr. X-ray diffraction and the identification and analysis of clay minerals. 2nd ed. Oxford: Oxford University Press; 1997.

    Google Scholar 

  12. Guggenheim S, Adams JM, Bain DC, Bergaya F, Brigatti MF, Drits VA, Formoso MLL, Galán E, Kogure T, Stanjek H. Summary of recommendations of nomenclature committees. Relevant to clay mineralogy: Report of the Association Internationale Pour L’etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays Clay Miner. 2006;54:761–72. https://doi.org/10.1346/CCMN.2006.0540610.

    Article  CAS  Google Scholar 

  13. Wilson MJ. Rock-forming minerals. Sheet silikates: clays minerals. London: The Geological Society; 2013.

    Google Scholar 

  14. Krupskaya V, Zakusin S, Tyupina E, Dorzhieva O, Zhukhlistov A, Belousov P, Timofeeva M. Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals. 2017;7:49–64. https://doi.org/10.3390/min7040049.

    Article  CAS  Google Scholar 

  15. Zuo Q, Gao X, Yang J, Zhang P, Chen G, Li Y, Shi K, Wu W. Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution. J Taiwan Inst Chem Eng. 2017;80:757–60.

    Article  Google Scholar 

  16. Wypych F. In: Wypych F, Satyanarayana GK, editors. Clay surfaces: fundamentals and applications, vol. 1. London: Academic Press; 2004.

    Google Scholar 

  17. Önal M, Sarıkaya Y. Preparation and characterization of acid-activated bentonite powders. Powder Technol. 2007;172:14–8. https://doi.org/10.1016/j.powtec.2006.10.034.

    Article  CAS  Google Scholar 

  18. Komadel P, Madejová J. In: Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. 1st ed. Amsterdam: Elsevier Ltd; 2006.

    Google Scholar 

  19. Marković G, Samaržija-Jovanović S, Jovanović V, Budinski-Simendić J, Marinović-Cincović M. Gamma irradiation: properties, behavior and applications. In: Brock J, editor. Gamma irradiation: properties, effects and development of new materials. New York: Nova Science Publisher; 2021.

    Google Scholar 

  20. Ajemba RO. Kinetics and equilibrium modeling of lead(II) and chromium(III) ions’ adsorption onto clay from Kono-bowe. Nigeria Turkish J Eng Environ Sci. 2014;38:455–79. https://doi.org/10.3906/muh-1402-3.

    Article  CAS  Google Scholar 

  21. Stoiljković S, Todorović B. Adsorption-desorption and usable properties of bentonite-based materials. Leskovac: Monografy (in Serbian Lanque); 2018.

    Google Scholar 

  22. Jovanović V, Samaržija-Jovanović S, Petković B, Dekić V, Marković G, Marinović-Cincović M. Effect of γ-irradiation on the hydrolytic and thermal stability of micro- and nano-TiO2 based urea-formaldehyde composites. RSC Adv. 2015;5:59715–22. https://doi.org/10.1039/C5RA10627C.

    Article  CAS  Google Scholar 

  23. Marković VM, Eymery R, Yuan HC. A new approach of Co-60 plant design for introduction of radiation sterilization in developing countries. Radiat Phys Chem. 1977;9(4–6):625–31. https://doi.org/10.1016/0146-5724(77)90176-5.

    Article  Google Scholar 

  24. Sears GW. Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Anal Chem. 1956;28:1981–1883. https://doi.org/10.1021/ac60120a048.

    Article  CAS  Google Scholar 

  25. Wibowo E, Park BD. Determination of crystallinity of thermosetting urea-formaldehyde resins using deconvolution method. Macromol Res. 2020;28(6):615–24. https://doi.org/10.1007/s13233-020-8076-2.

    Article  CAS  Google Scholar 

  26. Kordkheili HY, Najafi SK, Behrooz R. Influence of nanoclay on urea–glyoxalated lignin–formaldehyde resins for wood adhesive. J Adhes. 2017;93(6):431–43. https://doi.org/10.1080/00218464.2015.1079521.

    Article  CAS  Google Scholar 

  27. Samaržija-Jovanović S, Jovanović V, Petković B, Jovanović T, Marković G, Porobić S, Papan J, Marinović-Cincović M. Hydrolytic, thermal, and UV stability of urea-formaldehyde resin/thermally activated montmorillonite nanocomposites. Polym Compos. 2020;41(9):3575–84. https://doi.org/10.1002/pc.25644.

    Article  CAS  Google Scholar 

  28. Rusmin R, Sarkar B, Biswas B, Churchman J, Liu Y, Naidu R. Structural, electrokinetic and surface properties of activated palygorskite for environmental application. Appl Clay Sci. 2016;134:95–102. https://doi.org/10.1016/j.clay.2016.07.012.

    Article  CAS  Google Scholar 

  29. Bhattacharyya KG, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci. 2008;140:114–31. https://doi.org/10.1016/j.cis.2007.12.008.

    Article  CAS  PubMed  Google Scholar 

  30. Amari A, Gannouni H, Khan MI, Almesfer MK, Elkhaleefa AM, Gannouni A. Effect of structure and chemical activation on the adsorption properties of green clay minerals for the removal of cationic dye. Appl Sci. 2018;8:2302–32. https://doi.org/10.3390/app8112302.

    Article  CAS  Google Scholar 

  31. Razzaghi-Kashani KM, Hasankhani H, Kokabi M. Improvement in physical and mechanical properties of butyl rubber with montmorillonite organo-clay. Iran Polym J. 2007;16(10):671–9.

    CAS  Google Scholar 

  32. Oertel T, Hutter F, Helbig U, Sextl G. Amorphous silica in ultra-high performance concrete: first hour of hydration. Cem Concr Res. 2014;58:131–42. https://doi.org/10.1016/j.cemconres.2014.01.008.

    Article  CAS  Google Scholar 

  33. Nandiwale KY, Niphardar PS, Bokade VV. Synthesis of oxygenated fuel additives via acetylation of bio-glycerol over H2SO4 modified montmorillonite K10 catalyst. Prog Petrochemical Sci. 2018. https://doi.org/10.31031/PPS.2018.01.000501.

    Article  Google Scholar 

  34. Marsh A, Heath A, Patureau P, Evernden M, Walker P. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl Clay Sci. 2018;166:250–61. https://doi.org/10.1016/j.clay.2018.09.011.

    Article  CAS  Google Scholar 

  35. Jiang JQ, Zeng Z. Comparison of modified montmorillonite adsorbents. Part II: the effects of the type of raw clays and modification conditions on the adsorption performance. Chemosphere. 2003;53:53–62. https://doi.org/10.1016/S0045-6535(03)00449-1.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma S, Sarasan G. Influence of acid activation on natural calcium montmorillonite clay. IOSR-JAC. 2017;10(6):71–7.

    Article  CAS  Google Scholar 

  37. Ahmed A, Chaker Y, Belarbi EH, Abbas O, Chotard JN, Abassi HB, Nguyen Van Nhien A, El Hadri M, Bresson S. XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids. J Mol Struct. 2018;1173:653–64. https://doi.org/10.1016/j.molstruc.2018.07.039.

    Article  CAS  Google Scholar 

  38. Ates E, Uyanık N, Kızılcan N. Preparation of urea formaldehyde resin/layered silicate nanocomposites. Pigment Resin Technol. 2013;42:283–7. https://doi.org/10.1108/PRT-07-2012-0043.

    Article  CAS  Google Scholar 

  39. Kašić V, Mihajlović S, Životić D, Simić V, Stojanović J, Sekulić Ž, Kragović M. Karakterizacija zeolitskog tufa iz ležišta „Igroš-Vidojevići“ sa geološkog i tehnološkog aspekta. Hem Ind. 2018;72:29–37. https://doi.org/10.2298/HEMIND170428015K.

    Article  Google Scholar 

  40. Zivica V, Palou MT. Physico-chemical characterization of thermally treated bentonite. Compos Part B Eng. 2015;68:436–45. https://doi.org/10.1016/j.compositesb.2014.07.019.

    Article  CAS  Google Scholar 

  41. Tiwari RR, Khilar KC, Natarajan U. Synthesis and characterization of novel organo-montmorillonites. Appl Clay Sci. 2008;38:203–8. https://doi.org/10.1016/j.clay.2007.05.008.

    Article  CAS  Google Scholar 

  42. Qiu J, Jiang S, Wang Y, Chen G, Liu D, Liu X, Wang G, Wu P, Lyu X. Crystal chemistry characteristics and dispersion performance of Ca-montmorillonite with different layer charge density. Mater Res Express. 2020. https://doi.org/10.1088/2053-1591/aba803.

    Article  Google Scholar 

  43. Ebewele OR, Myers EG, River HB, Koutsky AJ. Polyamine-modified urea-formaldehyde resins. I. Synthesis, structure, and properties. J Appl Polym Sci. 1991;42(11):2997–3012. https://doi.org/10.1002/app.1991.070421118.

    Article  CAS  Google Scholar 

  44. Park DB, Jeong HN. Hydrolitic stability and crystallinity of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Int J Adhes Adhes. 2011;31:524–9. https://doi.org/10.1016/j.ijadhadh.2011.05.001.

    Article  CAS  Google Scholar 

  45. Chow C, Steiner RP. Catalytic, exothermic reactions of urea-formaldehyde resin. Holzforschung. 1975;29(1):4–10. https://doi.org/10.1515/hfsg.1975.29.1.4.

    Article  CAS  Google Scholar 

  46. Liu M, Thirumalai RVKG, Wu Y, Wan H. Characterization of the crystalline regions of cured urea formaldehyde resin. RSC Adv. 2017;7:49536–41. https://doi.org/10.1039/C7RA08082D.

    Article  CAS  Google Scholar 

  47. Marques IJ, Vaz PD, Fernandes AC, Nunes CD. Advantageous delivery of nifedipine from inorganic materials showing increased solubility and biocompatibility. Microporous Mesoporous Mater. 2014;183:192–200. https://doi.org/10.1016/j.micromeso.2013.09.021.

    Article  CAS  Google Scholar 

  48. Zhou Y, Yang M, Zheng Y, Tong D, Zhou C, Yu W. Effect of a novel environmentally friendly additive of polyaspartic acid on the properties of urea formaldehyde resins/montmorillonite. Appl Polym Sci. 2019;136:48038. https://doi.org/10.1002/app.48038.

    Article  CAS  Google Scholar 

  49. Wibowo ES, Lubis MAR, Park BD. In-situ modification of low molar ratio urea–formaldehyde resins with cellulose nanofibrils for plywood. J Adhes Sci Technol. 2021. https://doi.org/10.1080/01694243.2021.1890370.

    Article  Google Scholar 

  50. Zhao Y, Wang K, Zhu F, Xue P, Jia M. Properties of poly(vinyl chloride)/wood flour/montmorillonite composites: effects of coupling agents and layered silicate. Polym Degrad Stabil. 2006;91:2874–83. https://doi.org/10.1016/j.polymdegradstab.2006.09.001.

    Article  CAS  Google Scholar 

  51. Wibowo ES, Park BD. Enhancing adhesion of thermosetting ureaformaldehyde resins by preventing the formation of H-bonds with multi-reactive melamine. J Adhes. 2020. https://doi.org/10.1080/00218464.2020.1830069.

    Article  Google Scholar 

  52. Wibowo ES, Lubis MAR, Park BD, Kim JS, Causin V. Converting crystalline thermosetting urea–formaldehyde resins to amorphous polymer using modified nanoclay. J Ind Eng Chem. 2020;87:78–89. https://doi.org/10.1016/j.jiec.2020.03.014.

    Article  CAS  Google Scholar 

  53. Giroto AS, Guimarães GGF, Ribeiro CA. Novel, simple route to produce urea:urea–formaldehyde composites for controlled release of fertilizers. J Polym Environ. 2018;26:2448–58. https://doi.org/10.1007/s10924-017-1141-z.

    Article  CAS  Google Scholar 

  54. Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR. Review polymer/montmorillonite nanocomposites with improved thermal properties Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta. 2007;453:75–96. https://doi.org/10.1016/j.tca.2006.11.002.

    Article  CAS  Google Scholar 

  55. Leszczynska A, Pielichowski K. Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim. 2008;93:677–87. https://doi.org/10.1007/s10973-008-9128-6.

    Article  CAS  Google Scholar 

  56. Ge J, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc. 2004;126:15754–61. https://doi.org/10.1021/ja048648p.

    Article  CAS  PubMed  Google Scholar 

  57. Chrissafis K, Paraskevopoulos KM, Papageorgiou G, Bikiaris D. Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol). J Appl Polym Sci. 2008;105:1739–49. https://doi.org/10.1002/app.28818.

    Article  CAS  Google Scholar 

  58. Chrissafis K, Pavlidou E, Paraskevopoulos KM, Beslikas T, Nianias N, Bikiaris D. Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite. J Therm Anal Calorim. 2011;105:313–23. https://doi.org/10.1007/s10973-010-1168-z.

    Article  CAS  Google Scholar 

  59. Siimer K, Kaljuvee T, Christjanson P, Pehk T. Changes in curing behaviour of aminoresins during storage. J Therm Anal Calorim. 2005;80:123–30. https://doi.org/10.1007/s10973-005-0623-8.

    Article  CAS  Google Scholar 

  60. Siimer K, Kaljuvee T, Christjanson P. Thermal behaviour of urea-formaldehyde resins during curing. J Therm Anal Calorim. 2003;72:607–17. https://doi.org/10.1023/A:1024590019244.

    Article  CAS  Google Scholar 

  61. Samaržija-Jovanović S, Jovanović V, Konstantinović S, Marković G, Marinović-Cincović M. Thermal behavior of modified urea-formaldehyde resins. J Therm Anal Calorim. 2011;104:1159–66. https://doi.org/10.1007/s10973-010-1143-8.

    Article  CAS  Google Scholar 

  62. Roumeli E, Papadopoulou E, Pavlidou E, Vourlias G, Bikiaris D, Paraskevopoulus KM, Chrissafis K. Synthesis, characterization and thermal analysis of urea–formaldehyde/nanoSiO2 resins. Thermochim Acta. 2012;527:33–9. https://doi.org/10.1016/j.tca.2011.10.007.

    Article  CAS  Google Scholar 

  63. Moya R, Rodríguez-Zúñiga A, Vega-Baudrit J, Álvarez V. Effects of adding nano-clay(montmorillonite) on performance of polyvinylacetate (PVAc) and urea-formaldehyde (UF) adhesives in Carapa guianensis, a tropical species. Int J Adhes Adhes. 2015;59:62–70. https://doi.org/10.1016/j.ijadhadh.2015.02.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract number 451-03-68/2022-14/200123 and 451-03-68/2022-14/ 200017).

Funding

The research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract Number 451-03-68/2022-14/200123 and 451-03-68/2022-14/200017).

Author information

Authors and Affiliations

Authors

Contributions

SS-J: Conceptualization, Methodology, Investigation, Writing-review & editing, Supervision. VJ: Investigation, Writing-original draft, Project administration. TJ: Investigation, Validation. BP: Investigation, Writing-original draft, Writing-review & editing, Visualization. GM: Investigation, Writing-review & editing, SP: Investigation, Validation MM-C: Resources, Investigation, Writing-original draft, Writing-review & editing, Visualization.

Corresponding author

Correspondence to Suzana Samaržija-Jovanović.

Ethics declarations

Conflict of interest

Authors have not any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations.

Ethical approval

Not applicable.

Consent to participate

The article has been written by the stated authors who are ALL aware of its content and approve its submission.

Consent for publication

All mentioned authors agree that the paper should be published if the paper is accepted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaržija-Jovanović, S., Jovanović, V., Jovanović, T. et al. Thermal behavior of gamma-irradiated urea–formaldehyde composites based on the differently activated montmorillonite K10. J Therm Anal Calorim 147, 12467–12479 (2022). https://doi.org/10.1007/s10973-022-11450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11450-0

Keywords

Navigation