Skip to main content
Log in

Thermal efficiency enhancement of parabolic trough collectors: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The parabolic trough collectors are the most widely used linear concentrators for the thermodynamic conversion of solar energy, especially in industrial and domestic fields which require an operating temperature between 80 and 160 °C. The importance of these devices has led the various researchers to study the improvement of their performances in both experimental and numerical approach. A typical parabolic trough collector is mainly composed of the cavity collector, the tube receiver, the heat transfer fluid and the energy storage system. However, enhancing the global performance of these systems requires improving the performance of their main parts. For example, for many research studies in the literature, the use of nanofluids in normal tube receiver enhanced the efficiency up to 10%, while using tube receiver with insertion enhanced the global efficiency up to 10% in many research studies. Consequently, coupling of both nanofluids with insertion is surely enhancing the global efficiency. On the other hand, every improvement is accompanied with such a default to be minimized as much as possible, such as increasing of pressure drop which means increasing in the operating power. In this work, a global review of previous studied the enhancement of these kind of concentrators in terms of heat transfer as well as optical performance is presented; this investigation pays more attention to the works that dealt with the subject through numerical methods. Finally, probable further developments of these devices were outlined as well as the different points missed attention and more investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evans A, Strezov V, Evans TJ. Assessment of utility energy storage options for increased renewable energy penetration. Renew Sustain Energy Rev. 2012;16(6):4141–7.

    Article  Google Scholar 

  2. A. Ballouti, "Modélisation et simulation comportementale des systèmes à énergie renouvelable par VHDL-AMS," 2018.

  3. Fernández-García A, Zarza E, Valenzuela L, Pérez M. Parabolic-trough solar collectors and their applications. Renew Sustain Energy Rev. 2010;14(7):1695–721.

    Article  CAS  Google Scholar 

  4. Thomas A, Guven H. Parabolic trough concentrators—design, construction and evaluation. Energy Convers Manage. 1993;34(5):401–16.

    Article  CAS  Google Scholar 

  5. Tao T, Hongfei Z, Kaiyan H, Mayere A. A new trough solar concentrator and its performance analysis. Sol Energy. 2011;85(1):198–207.

    Article  Google Scholar 

  6. Chemisana D, Ibáñez M. Linear Fresnel concentrators for building integrated applications. Energy Convers Manage. 2010;51(7):1476–80.

    Article  Google Scholar 

  7. Mathur S, Kandpal T, Negi B. Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—II. Mirror elements of equal width. Energy Convers Manage. 1991;31(3):221–32.

    Article  Google Scholar 

  8. Akbarov RY, Kuchkarov A. Modeling and calculation of optical-geometric characteristics of a solar concentrator with flat fresnel mirrors. Appl Solar Energy. 2018;54(3):183–8.

    Article  Google Scholar 

  9. Flueckiger SM, Iverson BD, Garimella SV, Pacheco JE. System-level simulation of a solar power tower plant with thermocline thermal energy storage. Appl Energy. 2014;113:86–96.

    Article  Google Scholar 

  10. Liu M, Belusko M, Tay NS, Bruno F. Impact of the heat transfer fluid in a flat plate phase change thermal storage unit for concentrated solar tower plants. Sol Energy. 2014;101:220–31.

    Article  CAS  Google Scholar 

  11. Moradi M, Mehrpooya M. Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower. Energy. 2017;130:530–43.

    Article  CAS  Google Scholar 

  12. Li Z, Tang D, Du J, Li T. Study on the radiation flux and temperature distributions of the concentrator–receiver system in a solar dish/Stirling power facility. Appl Therm Eng. 2011;31(10):1780–9.

    Article  Google Scholar 

  13. Muthu G, Shanmugam S, Veerappan A. Solar parabolic dish thermoelectric generator with acrylic cover. Energy Procedia. 2014;54:2–10.

    Article  CAS  Google Scholar 

  14. Prado GO, Vieira LGM, Damasceno JJR. Solar dish concentrator for desalting water. Sol Energy. 2016;136:659–67.

    Article  CAS  Google Scholar 

  15. Cordillet S. "Modélisation et dimensionnement d'un récepteur solaire pour un système de production de froid par voie thermoacoustique," Université Paris Sud-Paris XI, 2013.

  16. Alucoil., "Manufacturer of ALMIRA reflector sheet, technical data sheet available at<https://alucoil.com/europe/wp-content/uploads/sites/3/2016/02/TECHNICAL-DETAILS-ALMIRR.pdf>.

  17. Dabwan YN, Gang P, Li J, Gao G, Feng J. Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater. Energy. 2018;162:364–79.

    Article  Google Scholar 

  18. Bamisile O, Huang Q, Hu W, Dagbasi M, Kemena AD. Performance analysis of a novel solar PTC integrated system for multi-generation with hydrogen production. Int J Hydrogen Energy. 2020;45(1):190–206.

    Article  CAS  Google Scholar 

  19. Devanarayanan K, Murugavel KK. Integrated collector storage solar water heater with compound parabolic concentrator–development and progress. Renew Sustain Energy Rev. 2014;39:51–64.

    Article  Google Scholar 

  20. Zou B, Dong J, Yao Y, Jiang Y. An experimental investigation on a small-sized parabolic trough solar collector for water heating in cold areas. Appl Energy. 2016;163:396–407.

    Article  Google Scholar 

  21. Lamrani B, Kuznik F, Draoui A. Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings. Renewable Energy. 2020;162:411–26.

    Article  CAS  Google Scholar 

  22. Balghouthi M, Ali ABH, Trabelsi SE, Guizani A. Optical and thermal evaluations of a medium temperature parabolic trough solar collector used in a cooling installation. Energy Convers Manage. 2014;86:1134–46.

    Article  Google Scholar 

  23. Mazloumi M, Naghashzadegan M, Javaherdeh K. Simulation of solar lithium bromide–water absorption cooling system with parabolic trough collector. Energy Convers Manage. 2008;49(10):2820–32.

    Article  CAS  Google Scholar 

  24. Tzivanidis C, Bellos E. The use of parabolic trough collectors for solar cooling–A case study for Athens climate. Case Studies in Thermal Engineering. 2016;8:403–13.

    Article  Google Scholar 

  25. Mbodji N, Hajji A. Performance testing of a parabolic solar concentrator for solar cooking. J Solar Ener Eng. 2016. https://doi.org/10.1115/1.4033501.

    Article  Google Scholar 

  26. Singh OK. Development of a solar cooking system suitable for indoor cooking and its exergy and enviroeconomic analyses. Sol Energy. 2021;217:223–34.

    Article  Google Scholar 

  27. Nation DD, Heggs PJ, Dixon-Hardy DW. Modelling and simulation of a novel electrical energy storage (EES) receiver for solar parabolic trough collector (PTC) power plants. Appl Energy. 2017;195:950–73.

    Article  CAS  Google Scholar 

  28. Baharoon DA, Rahman HA, Omar WZW, Fadhl SO. Historical development of concentrating solar power technologies to generate clean electricity efficiently–A review. Renew Sustain Energy Rev. 2015;41:996–1027.

    Article  Google Scholar 

  29. Askari IB, Ameri M. The application of linear Fresnel and parabolic trough solar fields as thermal source to produce electricity and fresh water. Desalination. 2017;415:90–103.

    Article  CAS  Google Scholar 

  30. Darwish M, Abdulrahim H, Hassan A, Mabrouk A. PV and CSP solar technologies & desalination: economic analysis. Desalin Water Treat. 2016;57(36):16679–702.

    CAS  Google Scholar 

  31. Abdulhamed AJ, Adam NM, Ab-Kadir MZA, Hairuddin AA. Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications. Renew Sustain Energy Rev. 2018;91:822–31.

    Article  Google Scholar 

  32. Khelkar AB, Debnath BK, Debnath K. Use of sinusoidal surface profile in the absorber tube of a parabolic trough solar collector to enhance its thermal performance. J Therm Anal Calorim. 2020;141(6):2589–97.

    Article  CAS  Google Scholar 

  33. Sokhansefat T, Kasaeian A, Kowsary F. Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sustain Energy Rev. 2014;33:636–44.

    Article  CAS  Google Scholar 

  34. Cheng Z-D, He Y-L, Du B-C, Wang K, Liang Q. Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm. Appl Energy. 2015;148:282–93.

    Article  Google Scholar 

  35. Ehyaei M, Ahmadi A, Assad MEH, Salameh T. Optimization of parabolic through collector (PTC) with multi objective swarm optimization (MOPSO) and energy, exergy and economic analyses. J Clean Prod. 2019;234:285–96.

    Article  Google Scholar 

  36. Hoseinzadeh H, Kasaeian A, Shafii MB. Geometric optimization of parabolic trough solar collector based on the local concentration ratio using the Monte Carlo method. Energy Convers Manage. 2018;175:278–87.

    Article  Google Scholar 

  37. Liu Q, Yang M, Lei J, Jin H, Gao Z, Wang Y. Modeling and optimizing parabolic trough solar collector systems using the least squares support vector machine method. Sol Energy. 2012;86(7):1973–80.

    Article  Google Scholar 

  38. Liang H, You S, Zhang H. Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors. Energy. 2016;96:37–47.

    Article  Google Scholar 

  39. García-Valladares O, Velázquez N. Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers. Int J Heat Mass Transf. 2009;52(3–4):597–609.

    Article  CAS  Google Scholar 

  40. Ghadirijafarbeigloo S, Zamzamian AH, Yaghoubi M. 3-D Numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Procedia. 2014;49:373–80.

    Article  Google Scholar 

  41. Kearney D, et al. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energy Eng. 2003;125(2):170–6.

    Article  CAS  Google Scholar 

  42. Trabelsi SE, Qoaider L, Guizani A. Investigation of using molten salt as heat transfer fluid for dry cooled solar parabolic trough power plants under desert conditions. Energy Convers Manage. 2018;156:253–63.

    Article  Google Scholar 

  43. Montes M, Abánades A, Martínez-Val J, Valdés M. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Sol Energy. 2009;83(12):2165–76.

    Article  CAS  Google Scholar 

  44. Boukelia T, Mecibah M, Kumar B, Reddy K. Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt. Energy. 2015;88:292–303.

    Article  CAS  Google Scholar 

  45. Fasquelle T, Falcoz Q, Neveu P, Hoffmann JF. Numerical simulation of a 50 MWe parabolic trough power plant integrating a thermocline storage tank. Energy Convers Manage. 2018;172:9–20.

    Article  Google Scholar 

  46. Kumaresan G, Sridhar R, Velraj R. Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy. 2012;47(1):395–402.

    Article  Google Scholar 

  47. Moens L, Blake DM, Rudnicki DL, Hale MJ. Advanced thermal storage fluids for solar parabolic trough systems. J Sol Energy Eng. 2003;125(1):112–6.

    Article  CAS  Google Scholar 

  48. Mussard M, Nydal OJ. Comparison of oil and aluminum-based heat storage charged with a small-scale solar parabolic trough. Appl Therm Eng. 2013;58(1–2):146–54.

    Article  CAS  Google Scholar 

  49. Pelay U, Luo L, Fan Y, Stitou D, Rood M. Thermal energy storage systems for concentrated solar power plants. Renew Sustain Energy Rev. 2017;79:82–100.

    Article  Google Scholar 

  50. Bakos GC. Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renew Energy. 2006;31(15):2411–21.

    Article  CAS  Google Scholar 

  51. Negi B, Purohit I. Experimental investigation of a box type solar cooker employing a non-tracking concentrator. Energy Convers Manage. 2005;46(4):577–604.

    Article  Google Scholar 

  52. Peng S, Hong H, Jin H, Zhang Z. A new rotatable-axis tracking solar parabolic-trough collector for solar-hybrid coal-fired power plants. Sol Energy. 2013;98:492–502.

    Article  Google Scholar 

  53. Bhale PV, Rathod MK, Sahoo L. Thermal analysis of a solar concentrating system integrated with sensible and latent heat storage. Energy Procedia. 2015;75:2157–62.

    Article  Google Scholar 

  54. Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy. 2007;81(6):829–37.

    Article  CAS  Google Scholar 

  55. Pm S. Experimental and numerical investigation on solar parabolic trough collector integrated with thermal energy storage unit. Int J Energy Res. 2016;40(11):1564–75.

    Article  Google Scholar 

  56. W.-D. Steinmann, "Thermal energy storage systems for concentrating solar power plants," in Concentrating solar power technology: Elsevier, 2021, pp. 399–440

  57. Temiz M, Dincer I. Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems. Energy. 2021;219: 119554.

    Article  CAS  Google Scholar 

  58. Al-Ansary H, Zeitoun O. Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector. Sol Energy. 2011;85(11):3036–45.

    Article  Google Scholar 

  59. F. Burkholder and C. Kutscher, "Heat-loss testing of Solel's UVAC3 parabolic trough receiver," National Renewable Energy Lab.(NREL), Golden, CO (United States) 2008.

  60. F. Burkholder and C. Kutscher, "Heat loss testing of Schott's 2008 PTR70 parabolic trough receiver," National Renewable Energy Lab.(NREL), Golden, CO (United States) 2009.

  61. Xu C, et al. Research on the compensation of the end loss effect for parabolic trough solar collectors. Appl Energy. 2014;115:128–39.

    Article  Google Scholar 

  62. Zhu X, Zhu L, Zhao J. Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver. Energy. 2017;141:1146–55.

    Article  Google Scholar 

  63. Hachicha AA, Rodríguez I, Castro J, Oliva A. Numerical simulation of wind flow around a parabolic trough solar collector. Appl Energy. 2013;107:426–37.

    Article  Google Scholar 

  64. Moghimi M, Ahmadi G. Wind barriers optimization for minimizing collector mirror soiling in a parabolic trough collector plant. Appl Energy. 2018;225:413–23.

    Article  Google Scholar 

  65. Paetzold J, Cochard S, Vassallo A, Fletcher D. Wind engineering analysis of parabolic trough solar collectors: the effects of varying the trough depth. J Wind Eng Ind Aerodyn. 2014;135:118–28.

    Article  Google Scholar 

  66. Rao B, Reddy K. Wind load and structural analysis for standalone solar parabolic trough collector. Renewable Energy. 2021;173:688–703.

    Article  Google Scholar 

  67. Winkelmann U, Kämper C, Höffer R, Forman P, Ahrens MA, Mark P. Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis. Renewable Energy. 2020;146:2390–407.

    Article  Google Scholar 

  68. Zhang L, Yang M, Zhu Y, Chen H. Numerical study and optimization of mirror gap effect on wind load on parabolic trough solar collectors. Energy Procedia. 2015;69:233–41.

    Article  Google Scholar 

  69. Andre M, Mier-Torrecilla M, Wüchner R. Numerical simulation of wind loads on a parabolic trough solar collector using lattice Boltzmann and finite element methods. J Wind Eng Ind Aerodyn. 2015;146:185–94.

    Article  Google Scholar 

  70. Hachicha AA, Al-Sawafta I, Hamadou DB. Numerical and experimental investigations of dust effect on CSP performance under United Arab Emirates weather conditions. Renew Energy. 2019;143:263–76.

    Article  Google Scholar 

  71. Usamentiaga R, Fernández A, Carús JL. Evaluation of dust deposition on parabolic trough collectors in the visible and infrared spectrum. Sensors. 2020;20(21):6249.

    Article  PubMed Central  Google Scholar 

  72. Wu Z, et al. The effect of dust accumulation on the cleanliness factor of a parabolic trough solar concentrator. Renew Energy. 2020;152:529–39.

    Article  CAS  Google Scholar 

  73. Chekifi T. Droplet Breakup Regime in a Cross-Junction Device with Lateral Obstacles. Fluid Dynamics & Materials Processing. 2019;15(5):545–55.

    Article  Google Scholar 

  74. Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for thermal analysis of heat exchangers–a review. Int J Therm Sci. 2015;90:150–72.

    Article  Google Scholar 

  75. M. Mohanraj, N. Gunasekar, V. Velmurugan, "Comparison of energy performance of heat pumps using a photovoltaic–thermal evaporator with circular and triangular tube configurations," in Building Simulation, 2016, vol. 9, no. 1, pp. 27–41: Springer.

  76. Ajbar W, et al. The multivariable inverse artificial neural network combined with GA and PSO to improve the performance of solar parabolic trough collector. Appl Therm Eng. 2021;189: 116651.

    Article  Google Scholar 

  77. Cervantes-Bobadilla M, et al. Control scheme formulation for a parabolic trough collector using inverse artificial neural networks and particle swarm optimization. J Braz Soc Mech Sci Eng. 2021;43(4):1–14.

    Article  Google Scholar 

  78. S. A. Kalogirou, C. Neocleous, C. N. Schizas, "Artificial neural networks for the estimation of the performance of a parabolic trough collector steam generation system," 1997.

  79. Zaaoumi A, et al. Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models. Renew Energy. 2021;170:620–38.

    Article  Google Scholar 

  80. Chekifi T. Computational study of droplet breakup in a trapped channel configuration using volume of fluid method. Flow Meas Instrum. 2018;59:118–25.

    Article  Google Scholar 

  81. Wang K, He Y, Cheng Z. A design method and numerical study for a new type parabolic trough solar collector with uniform solar flux distribution. Science China Technol Sci. 2014;57(3):531–40.

    Article  Google Scholar 

  82. Riffelmann K-J, Neumann A, Ulmer S. Performance enhancement of parabolic trough collectors by solar flux measurement in the focal region. Sol Energy. 2006;80(10):1303–13.

    Article  CAS  Google Scholar 

  83. N. Ur Rehman, M. Uzair, and M. Asif 2020 "Evaluating the solar flux distribution uniformity factor for parabolic trough collectors," Renewable Energy, 157:888–896

  84. M. Eck and K. Hennecke, "Heat transfer fluids for future parabolic trough solar thermal power plants," In Proceedings of ISES world congress 2007 (Vol. I–Vol. V), 2008, pp. 1806–1812: Springer, Berlin

  85. Cheng Z, He Y, Xiao J, Tao Y, Xu R. Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. Int Commun Heat Mass Transfer. 2010;37(7):782–7.

    Article  CAS  Google Scholar 

  86. Qiu Y, Li M-J, He Y-L, Tao W-Q. Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux. Appl Therm Eng. 2017;115:1255–65.

    Article  CAS  Google Scholar 

  87. Khanna S, Kedare SB, Singh S. Deflection and stresses in absorber tube of solar parabolic trough due to circumferential and axial flux variations on absorber tube supported at multiple points. Sol Energy. 2014;99:134–51.

    Article  Google Scholar 

  88. Khanna S, Singh S, Kedare SB. Explicit expressions for temperature distribution and deflection in absorber tube of solar parabolic trough concentrator. Sol Energy. 2015;114:289–302.

    Article  Google Scholar 

  89. Mwesigye A, Meyer JP. Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Appl Energy. 2017;193:393–413.

    Article  CAS  Google Scholar 

  90. Sandeep H, Arunachala U. Solar parabolic trough collectors: a review on heat transfer augmentation techniques. Renew Sustain Energy Rev. 2017;69:1218–31.

    Article  CAS  Google Scholar 

  91. Xu R, Wiesner TF. Closed-form modeling of direct steam generation in a parabolic trough solar receiver. Energy. 2015;79:163–76.

    Article  Google Scholar 

  92. Klochko N, et al. Zinc oxide–nickel cermet selective coatings obtained by sequential electrodeposition. Sol Energy. 2015;117:1–9.

    Article  CAS  Google Scholar 

  93. Canavarro D, Chaves J, Collares-Pereira M. Infinitesimal etendue and Simultaneous Multiple Surface (SMS) concentrators for fixed receiver troughs. Sol Energy. 2013;97:493–504.

    Article  Google Scholar 

  94. He Z. The thermal utilization of solar energy. Hefei: Press of University of Science and Technology of China; 2009.

    Google Scholar 

  95. Hepbasli A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sustain Energy Rev. 2008;12(3):593–661.

    Article  Google Scholar 

  96. Eiamsa-ard S, Thianpong C, Eiamsa-ard P. Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes. Exp Thermal Fluid Sci. 2010;34(1):53–62.

    Article  Google Scholar 

  97. A. Bejan, Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press, 2013.

  98. Huang Z, Li Z-Y, Yu G-L, Tao W-Q. Numerical investigations on fully-developed mixed turbulent convection in dimpled parabolic trough receiver tubes. Appl Therm Eng. 2017;114:1287–99.

    Article  CAS  Google Scholar 

  99. Jaramillo O, Borunda M, Velazquez-Lucho K, Robles M. Parabolic trough solar collector for low enthalpy processes: An analysis of the efficiency enhancement by using twisted tape inserts. Renewable Energy. 2016;93:125–41.

    Article  Google Scholar 

  100. Mwesigye A, Bello-Ochende T, Meyer JP. Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts. Appl Energy. 2014;136:989–1003.

    Article  Google Scholar 

  101. Bellos E, Tzivanidis C, Tsimpoukis D. Thermal enhancement of parabolic trough collector with internally finned absorbers. Sol Energy. 2017;157:514–31.

    Article  Google Scholar 

  102. Wang F, Shuai Y, Yuan Y, Yang G, Tan H. Thermal stress analysis of eccentric tube receiver using concentrated solar radiation. Sol Energy. 2010;84(10):1809–15.

    Article  Google Scholar 

  103. Bellos E, Tzivanidis C, Tsimpoukis D. Multi-criteria evaluation of parabolic trough collector with internally finned absorbers. Appl Energy. 2017;205:540–61.

    Article  Google Scholar 

  104. Liu Y, Chen Q, Hu K, Hao J-H. Flow field optimization for the solar parabolic trough receivers in direct steam generation systems by the variational principle. Int J Heat Mass Transf. 2016;102:1073–81.

    Article  Google Scholar 

  105. Bellos E, Tzivanidis C, Antonopoulos KA, Gkinis G. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renewable Energy. 2016;94:213–22.

    Article  CAS  Google Scholar 

  106. Bozorg MV, Doranehgard MH, Hong K, Xiong Q. CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid. Renewable Energy. 2020;145:2598–614.

    Article  CAS  Google Scholar 

  107. Norouzi AM, Siavashi M, Oskouei MK. Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles. Renew Energy. 2020;145:569–84.

    Article  CAS  Google Scholar 

  108. Muñoz J, Abánades A. Analysis of internal helically finned tubes for parabolic trough design by CFD tools. Appl Energy. 2011;88(11):4139–49.

    Article  Google Scholar 

  109. Song X, Dong G, Gao F, Diao X, Zheng L, Zhou F. A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts. Energy. 2014;77:771–82.

    Article  Google Scholar 

  110. Biswakarma S, Roy S, Das B, Debnath BK. Performance analysis of internally helically v-grooved absorber tubes using nanofluid. Thermal Sci Eng Progr. 2020;18: 100538.

    Article  Google Scholar 

  111. Fuqiang W, Qingzhi L, Huaizhi H, Jianyu T. Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics. Appl Energy. 2016;164:411–24.

    Article  Google Scholar 

  112. Fuqiang W, Zhexiang T, Xiangtao G, Jianyu T, Huaizhi H, Bingxi L. Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube. Energy. 2016;114:275–92.

    Article  Google Scholar 

  113. Bellos E, Tzivanidis C, Daniil I, Antonopoulos KA. The impact of internal longitudinal fins in parabolic trough collectors operating with gases. Energy Convers Manage. 2017;135:35–54.

    Article  CAS  Google Scholar 

  114. Cheng Z, He Y, Cui F. Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers. Int J Heat Mass Transf. 2012;55(21–22):5631–41.

    Article  Google Scholar 

  115. Liu P, Lv J, Shan F, Liu Z, Liu W. Effects of rib arrangements on the performance of a parabolic trough receiver with ribbed absorber tube. Appl Therm Eng. 2019;156:1–13.

    Article  Google Scholar 

  116. Chang C, et al. Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid. Appl Energy. 2018;220:337–50.

    Article  Google Scholar 

  117. de Los Rios MSB, Rivera-Solorio CI, García-Cuéllar AJ. Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids. Renewa Ener. 2018;122:665–73.

    Article  CAS  Google Scholar 

  118. He Y-L, Xiao J, Cheng Z-D, Tao Y-B. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew Energy. 2011;36(3):976–85.

    Article  Google Scholar 

  119. V. E. Dudley et al., "Test results: SEGS LS-2 solar collector," Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) 1994.

  120. Ahmed KA, Natarajan E. Thermal performance enhancement in a parabolic trough receiver tube with internal toroidal rings: a numerical investigation. Appl Therm Eng. 2019;162: 114224.

    Article  Google Scholar 

  121. Mengna H, Xianhe D, Huang K, Zhiwu L. Compound heat transfer enhancement of a converging-diverging tube with evenly spaced twisted-tapes. Chin J Chem Eng. 2007;15(6):814–20.

    Article  Google Scholar 

  122. Reddy K, Satyanarayana G. Numerical study of porous finned receiver for solar parabolic trough concentrator. Eng Appl Computat Fluid Mech. 2008;2(2):172–84.

    Google Scholar 

  123. Muñoz J, Abánades A. A technical note on application of internally finned tubes in solar parabolic trough absorber pipes. Sol Energy. 2011;85(3):609–12.

    Article  Google Scholar 

  124. Demagh Y, Hachicha AA, Benmoussa H, Kabar Y. Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology. Appl Energy. 2018;218:494–510.

    Article  Google Scholar 

  125. Liu P, Zheng N, Liu Z, Liu W. Thermal-hydraulic performance and entropy generation analysis of a parabolic trough receiver with conical strip inserts. Energy Convers Manage. 2019;179:30–45.

    Article  Google Scholar 

  126. Bellos E, Tzivanidis C, Tsimpoukis D. Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renew Sustain Energy Rev. 2018;91:358–75.

    Article  CAS  Google Scholar 

  127. Manikandan G, Iniyan S, Goic R. Enhancing the optical and thermal efficiency of a parabolic trough collector–A review. Appl Energy. 2019;235:1524–40.

    Article  CAS  Google Scholar 

  128. Wang P, Liu D, Xu C. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams. Appl Energy. 2013;102:449–60.

    Article  Google Scholar 

  129. Kalidasan B, Shankar R, Srinivas T. Absorber tube with internal hinged blades for solar parabolic trough collector. Energy Procedia. 2016;90:463–9.

    Article  Google Scholar 

  130. Jamal-Abad MT, Saedodin S, Aminy M. Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media. Renew Energy. 2017;107:156–63.

    Article  Google Scholar 

  131. Kumar KR, Reddy K. Thermal analysis of solar parabolic trough with porous disc receiver. Appl Energy. 2009;86(9):1804–12.

    Article  Google Scholar 

  132. Zheng Z, Xu Y, He Y. Thermal analysis of a solar parabolic trough receiver tube with porous insert optimized by coupling genetic algorithm and CFD. Science China Tech Sci. 2016;59(10):1475–85.

    Article  CAS  Google Scholar 

  133. Mwesigye A, Bello-Ochende T, Meyer JP. Multi-objective and thermodynamic optimisation of a parabolic trough receiver with perforated plate inserts. Appl Therm Eng. 2015;77:42–56.

    Article  Google Scholar 

  134. Amina B, Miloud A, Samir L, Abdelylah B, Solano J. Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids. J Therm Sci. 2016;25(5):410–7.

    Article  CAS  Google Scholar 

  135. Ghasemi SE, Ranjbar AA. Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector. Appl Therm Eng. 2017;118:807–16.

    Article  CAS  Google Scholar 

  136. Mwesigye A, Bello-Ochende T, Meyer JP. Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts. Int J Therm Sci. 2016;99:238–57.

    Article  Google Scholar 

  137. Ghasemi SE, Ranjbar AA. Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study. J Mol Liq. 2016;222:159–66.

    Article  CAS  Google Scholar 

  138. Deymi-Dashtebayaz M, Akhoundi M, Ebrahimi-Moghadam A, Arabkoohsar A, Jabari Moghadam A, Farzaneh-Gord M. Thermo-hydraulic analysis and optimization of CuO/water nanofluid inside helically dimpled heat exchangers. J Ther Anal Calor. 2021;143(6):4009–24.

    Article  CAS  Google Scholar 

  139. Ebrahimi-Moghadam A, Kowsari S, Farhadi F, Deymi-Dashtebayaz M. Thermohydraulic sensitivity analysis and multi-objective optimization of Fe3O4/H2O nanofluid flow inside U-bend heat exchangers with longitudinal strip inserts. Appl Therm Eng. 2020;164: 114518.

    Article  CAS  Google Scholar 

  140. Ebrahimi-Moghadam A, Gohari F, Hoseinzade D, Deymi-Dashtebayaz M. A comprehensive thermo-hydraulic analysis and optimization of turbulent TiO2/W-EG nano-fluid flow inside double-pipe heat exchangers with helical coil inserts. J Braz Soc Mech Sci Eng. 2020;42(5):1–14.

    Article  CAS  Google Scholar 

  141. Deymi-Dashtebayaz M, Rezapour M, Farahnak M. Modeling of a novel nanofluid-based concentrated photovoltaic thermal system coupled with a heat pump cycle (CPVT-HP). Appl Therm Eng. 2022;201: 117765.

    Article  CAS  Google Scholar 

  142. Deymi-Dashtebayaz M, Rezapour M. The effect of using nanofluid flow into a porous channel in the CPVT under transient solar heat flux based on energy and exergy analysis. J Therm Anal Calorim. 2021;145(2):507–21.

    Article  CAS  Google Scholar 

  143. Ferraro V, Settino J, Cucumo M, Kaliakatsos D. Parabolic trough system operating with nanofluids: comparison with the conventional working fluids and influence on the system performance. Energy procedia. 2016;101:782–9.

    Article  CAS  Google Scholar 

  144. Bellos E, Tzivanidis C. Parametric investigation of nanofluids utilization in parabolic trough collectors. Thermal Sci Eng Progress. 2017;2:71–9.

    Article  Google Scholar 

  145. Ansong M, Mensah LD, Adaramola MS. Techno-economic analysis of a hybrid system to power a mine in an off-grid area in Ghana. Sustain Energy Techn Assess. 2017;23:48–56.

    Google Scholar 

  146. Bellos E, Tzivanidis C, Tsimpoukis D. Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids. Energy Convers Manage. 2018;156:388–402.

    Article  CAS  Google Scholar 

  147. Minea AA, El-Maghlany WM. Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison. Renew Energy. 2018;120:350–64.

    Article  CAS  Google Scholar 

  148. Basbous N, Taqi M, Belouaggadia N. Numerical study of a parabolic trough collector using a nanofluid. Asian J Curr Eng Maths. 2015;4(3):40–4.

    Google Scholar 

  149. Ghasemi SE, Ranjbar AA. Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants. Int J Hydrogen Energy. 2017;42(34):21626–34.

    Article  CAS  Google Scholar 

  150. Marefati M, Mehrpooya M, Shafii MB. Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids. J Clean Prod. 2018;175:294–313.

    Article  CAS  Google Scholar 

  151. H. Khakrah, A. Shamloo, and S. Kazemzadeh Hannani, "Determination of parabolic trough solar collector efficiency using nanofluid: a comprehensive numerical study," Journal of Solar Energy Engineering, vol. 139, no. 5, 2017.

  152. Mwesigye A, Huan Z, Meyer JP. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid. Appl Energy. 2015;156:398–412.

    Article  CAS  Google Scholar 

  153. Mwesigye A, Huan Z. Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water–Al2O3 nanofluid. Int J Heat Mass Transf. 2015;89:694–706.

    Article  CAS  Google Scholar 

  154. Mwesigye A, Huan Z, Meyer JP. Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol® VP-1 nanofluid. Energy Convers Manage. 2016;120:449–65.

    Article  CAS  Google Scholar 

  155. Mwesigye A, Yılmaz İH, Meyer JP. Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol® VP-1 nanofluid. Renewable Energy. 2018;119:844–62.

    Article  CAS  Google Scholar 

  156. Wang Y, Xu J, Liu Q, Chen Y, Liu H. Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid. Appl Therm Eng. 2016;107:469–78.

    Article  CAS  Google Scholar 

  157. Zadeh PM, Sokhansefat T, Kasaeian A, Kowsary F, Akbarzadeh A. Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid. Energy. 2015;82:857–64.

    Article  CAS  Google Scholar 

  158. A. Benabderrahmane, A. Benazza, M. Aminallah, and S. Laouedj, "Heat transfer behaviors in parabolic trough solar collector tube with compound technique," International Journal of Scientific Research Engineering & Technology (IJSRET), vol. 5, no. 11, 2016.

  159. Bilal F, Arunachala U, Sandeep H. Experimental validation of energy parameters in parabolic trough collector with plain absorber and analysis of heat transfer enhancement techniques. J Phys Conf Ser. 2018;953(1):012030.

    Article  CAS  Google Scholar 

  160. Hatami M, Geng J, Jing D. Enhanced efficiency in concentrated parabolic solar collector (CPSC) with a porous absorber tube filled with metal nanoparticle suspension. Green Energy Environ. 2018;3(2):129–37.

    Article  Google Scholar 

  161. Kaloudis E, Papanicolaou E, Belessiotis V. Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model. Renew Energy. 2016;97:218–29.

    Article  CAS  Google Scholar 

  162. A. Mwesigye, Z. Huan, and J. P. Meyer, "Thermal performance of a receiver tube for a high concentration ratio parabolic trough system and potential for improved performance with Syltherm800-CuO nanofluid," in ASME International Mechanical Engineering Congress and Exposition, 2015, vol. 57502, p. V08BT10A004: American Society of Mechanical Engineers.

  163. "<ebrahim2017 Identification of the impact regimes of a liquid droplet propelled by a gas.pdf>."

  164. Fuqiang W, Ziming C, Jianyu T, Yuan Y, Yong S, Linhua L. Progress in concentrated solar power technology with parabolic trough collector system: a comprehensive review. Renew Sustain Energy Rev. 2017;79:1314–28.

    Article  Google Scholar 

  165. Schiricke BR, et al. Validation of optical modeling of parabolic trough collectors by flux measurement,". Energy Sustain. 2007;47977:1071–6.

    Google Scholar 

  166. Jeter SM. Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. Sol Energy. 1986;37(5):335–45.

    Article  Google Scholar 

  167. Daly J. Solar concentrator flux distributions using backward ray tracing. Appl Opt. 1979;18(15):2696–9.

    Article  CAS  PubMed  Google Scholar 

  168. Grena R. Optical simulation of a parabolic solar trough collector. Int J Sustain Energ. 2010;29(1):19–36.

    Article  Google Scholar 

  169. Christian JM, Ho CK. Finite element modeling and ray tracing of parabolic trough collectors for evaluation of optical intercept factors with gravity loading. Energy Sustain. 2011;54686:577–85.

    Google Scholar 

  170. Khanna S, Kedare SB, Singh S. Analytical expression for circumferential and axial distribution of absorbed flux on a bent absorber tube of solar parabolic trough concentrator. Sol Energy. 2013;92:26–40.

    Article  Google Scholar 

  171. Almanza R, Lentz A, Jimenez G. Receiver behavior in direct steam generation with parabolic troughs. Sol Energy. 1997;61(4):275–8.

    Article  Google Scholar 

  172. Kearney D, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy. 2004;29(5–6):861–70.

    Article  CAS  Google Scholar 

  173. Xiong Y, Wu Y, Ma C, Traore MK, Zhang Y. Numerical investigation of thermal performance of heat loss of parabolic trough receiver. Science China Technol Sci. 2010;53(2):444–52.

    Article  Google Scholar 

  174. Benyakhlef S, et al. Impact of heliostat curvature on optical performance of Linear Fresnel solar concentrators. Renewable Energy. 2016;89:463–74.

    Article  Google Scholar 

  175. Lüpfert E, Pottler K, Ulmer S, Riffelmann K-J, Neumann A, Schiricke B. Parabolic trough optical performance analysis techniques. J Solar Energy Eng, DOI. 2007;10(1115/1):2710249.

    Google Scholar 

  176. Lampert CM. Coatings for enhanced photothermal energy collection I. Selective absorbers. Solar Energy Mater. 1979;1(5–6):319–41.

    Article  CAS  Google Scholar 

  177. Selvakumar N, Barshilia HC. Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Sol Energy Mater Sol Cells. 2012;98:1–23.

    Article  CAS  Google Scholar 

  178. Granqvist CG. Solar energy materials. Adv Mater. 2003;15(21):1789–803.

    Article  CAS  Google Scholar 

  179. C. E. Kennedy, "Review of mid-to high-temperature solar selective absorber materials," National Renewable Energy Lab., Golden, CO.(US)2002.

  180. Hutchins MG. Spectrally selective solar absorber coatings. Appl Energy. 1979;5(4):251–62.

    Article  CAS  Google Scholar 

  181. Atkinson C, Sansom CL, Almond HJ, Shaw CP. Coatings for concentrating solar systems–A review. Renew Sustain Energy Rev. 2015;45:113–22.

    Article  CAS  Google Scholar 

  182. Zhang K, Hao L, Du M, Mi J, Wang J-N, Meng J-P. A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings. Renew Sustain Energy Rev. 2017;67:1282–99.

    Article  CAS  Google Scholar 

  183. Dan A, Barshilia HC, Chattopadhyay K, Basu B. Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: a critical review. Renew Sustain Energy Rev. 2017;79:1050–77.

    Article  Google Scholar 

  184. S. S. P. 70, "Receivers Manufacturers Datasheet.<http://www.schott.com/csp/english/schott-solar-ptr-70-receivers>[accessed 04.04.14].".

  185. Macleod HA. Thin film optical filters. 3rd ed. Oxfordshire: Taylor & Francis; 2001.

    Book  Google Scholar 

  186. Prado R, Beobide G, Marcaide A, Goikoetxea J, Aranzabe A. Development of multifunctional sol–gel coatings: anti-reflection coatings with enhanced self-cleaning capacity. Sol Energy Mater Sol Cells. 2010;94(6):1081–8.

    Article  CAS  Google Scholar 

  187. Wu G, et al. A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings. Mater Sci Eng, B. 2000;78(2–3):135–9.

    Article  Google Scholar 

  188. Xin C, Peng C, Xu Y, Wu J. A novel route to prepare weather resistant, durable antireflective films for solar glass. Sol Energy. 2013;93:121–6.

    Article  CAS  Google Scholar 

  189. Wu G, et al. A new method to control nano-porous structure of sol-gel-derived silica films and their properties. Mater Res Bull. 2001;36(12):2127–39.

    Article  CAS  Google Scholar 

  190. Bautista M, Morales A. Silica antireflective films on glass produced by the sol–gel method. Sol Energy Mater Sol Cells. 2003;80(2):217–25.

    Article  CAS  Google Scholar 

  191. Strawbridge I, James P. The factors affecting the thickness of sol-gel derived silica coatings prepared by dipping. J Non-Cryst Solids. 1986;86(3):381–93.

    Article  CAS  Google Scholar 

  192. Mukherjee S. Sol-gel processes in glass science and technology. J Non-Cryst Solids. 1980;42(1–3):477–88.

    Article  CAS  Google Scholar 

  193. Brinker C, Hurd A, Schunk P, Frye G, Ashley C. Review of sol-gel thin film formation. J Non-Cryst Solids. 1992;147:424–36.

    Article  Google Scholar 

  194. Brinker C, Frye G, Hurd A, Ashley C. Fundamentals of sol-gel dip coating. Thin Solid Films. 1991;201(1):97–108.

    Article  CAS  Google Scholar 

  195. Guglielmi M, Zenezini S. The thickness of sol-gel silica coatings obtained by dipping. J Non-Cryst Solids. 1990;121(1–3):303–9.

    Article  CAS  Google Scholar 

  196. R. Glass., "<http://rioglass.com/technology/>."

  197. A. S. M. T. T. d. a. at<http://www.agc-solar. and com/agc-solar-products/float/sunmax.html#uid_18_tech>.

  198. R. Mirrors., " Technical details available at<http://www.ronda-hightech.com/it?page_id=27&lang=en>.".

  199. ALMECO Group, "technical details available at<http://www.almecogroup.com/uploads/5932-LMECO_vegaEnergy_ENG_S302_01_2015-mail.pdf>.".

  200. Korres DN, Tzivanidis C. Investigation of a novel small-sized bifacial cavity PTC and comparison with conventional configurations. Thermal Sci Eng Progress. 2020;17: 100355.

    Article  Google Scholar 

  201. Van D, Gerardo D. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems. AIMS Energy. 2014;1(1):99–115.

    Google Scholar 

  202. Xiao X, Zhang P, Shao D, Li M. Experimental and numerical heat transfer analysis of a V-cavity absorber for linear parabolic trough solar collector. Energy Convers Manage. 2014;86:49–59.

    Article  Google Scholar 

  203. Lin M, Sumathy K, Dai Y, Zhao X. Performance investigation on a linear Fresnel lens solar collector using cavity receiver. Sol Energy. 2014;107:50–62.

    Article  Google Scholar 

  204. Boyd DA, Gajewski R, Swift R. A cylindrical blackbody solar energy receiver. Sol Energy. 1976;18(5):395–401.

    Article  Google Scholar 

  205. Chen F, Li M, Zhang P, Luo X. Thermal performance of a novel linear cavity absorber for parabolic trough solar concentrator. Energy Convers Manage. 2015;90:292–9.

    Article  Google Scholar 

  206. Lv Y, Si P, Rong X, Yan J, Feng Y, Zhu X. Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection. Appl Energy. 2018;219:11–9.

    Article  Google Scholar 

  207. Lin M, Sumathy K, Dai Y, Wang R, Chen Y. Experimental and theoretical analysis on a linear Fresnel reflector solar collector prototype with V-shaped cavity receiver. Appl Therm Eng. 2013;51(1–2):963–72.

    Article  Google Scholar 

  208. Al-Nimr M, Al-Darawsheh I, Al-Khalayleh L. A novel hybrid cavity solar thermal collector. Renew Energy. 2018;115:299–307.

    Article  Google Scholar 

  209. Facão J, Oliveira AC. Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renew Energy. 2011;36(1):90–6.

    Article  Google Scholar 

  210. Li X, Chang H, Duan C, Zheng Y, Shu S. Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors. Appl Energy. 2019;237:431–9.

    Article  Google Scholar 

  211. Singh PL, Sarviya R, Bhagoria J. Heat loss study of trapezoidal cavity absorbers for linear solar concentrating collector. Energy Convers Manage. 2010;51(2):329–37.

    Article  Google Scholar 

  212. Zhang L, Fang J, Wei J, Yang G. Numerical investigation on the thermal performance of molten salt cavity receivers with different structures. Appl Energy. 2017;204:966–78.

    Article  Google Scholar 

  213. Bader R, Pedretti A, Barbato M, Steinfeld A. An air-based corrugated cavity-receiver for solar parabolic trough concentrators. Appl Energy. 2015;138:337–45.

    Article  Google Scholar 

  214. Melchior T, Perkins C, Weimer AW, Steinfeld A. A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy. Int J Therm Sci. 2008;47(11):1496–503.

    Article  CAS  Google Scholar 

  215. Lin M, Reinhold J, Monnerie N, Haussener S. Modeling and design guidelines for direct steam generation solar receivers. Appl Energy. 2018;216:761–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawfiq Chekifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekifi, T., Boukraa, M. Thermal efficiency enhancement of parabolic trough collectors: a review. J Therm Anal Calorim 147, 10923–10942 (2022). https://doi.org/10.1007/s10973-022-11369-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11369-6

Keywords

Navigation