Skip to main content

Thermal Efficiency Enhancement of Solar Parabolic Trough Collector Using Nanofluids: A Recent Review

  • Conference paper
  • First Online:
Advances in Solar Power Generation and Energy Harvesting

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

Recent studies on the potential of the nanofluids on the performance enhancement of the parabolic trough collectors seem to be pointing toward development of the next generation of the solar collectors having great potential to be used for co-generation with integrated solar thermal systems. To achieve it, most researchers are investigating the superior performance of non-conventional heat transfer fluids, such as the nanofluids. The present paper is an effort to review recent research efforts on the performance of parabolic trough collectors using nanofluids. Studies on the various properties of nanofluids seem to be suggesting the positive impact of these fluids in increasing the heat transfer characteristics. The concurrent studies carried out to use nanofluids in coupled solar thermal systems are likely to enhance the process of heat energy collection from the sun in a highly concentrating trough type collector. The objective of the current study is to report recent progress on thermal efficiency enhancement in the parabolic solar trough collector using nanofluids. Experimental and numerical simulation results have been covered by referring to recent research papers. This work will act as a valuable tool to future researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Xu, W. Chen, S. Deng, X. Zhang, S. Zhao, Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator. Nanomaterials 5, 2131–2147 (2015)

    Article  Google Scholar 

  2. R.V. Padilla, G. Demirkaya, D.Y. Goswami, E. Stefanakos, M.M. Rahman, Heat transfer analysis of parabolic trough solar receiver. Appl. Energy 88, 5097–5110 (2011)

    Article  Google Scholar 

  3. G. Kumaresan, P. Sudhakar, R. Santosh, R. Velraj, Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors. Renew. Sustain. Energy Rev. 77, 1363–1374 (2017)

    Article  Google Scholar 

  4. R.A. Taylor, P.E. Phelan, T.P. Otanicar, C.A. Walker, M. Nguyen, S. Trimble, R. Prasher, Applicability of nanofluids in high flux solar collectors. J. Renew. Sustain. Energy 3, 023104 (2011)

    Article  Google Scholar 

  5. M. Natarajana, R. T. Karuppa Raj, Y. R. Sekhar, T. Srinivas, P. Gupta, Numerical simulation of heat transfer characteristics in the absorber tube of parabolic trough collector with internal flow obstructions. ARPN J. Eng. Appl. Sci. 9, 674–681 (2014)

    Google Scholar 

  6. K. Ajay, K. Lal, An experimental and cfd analysis of cuo-h2o (di) nanofluid based parabolic solar collector. IOSR J. Mech.Civ. Eng. 78–82 (2015)

    Google Scholar 

  7. K. Chaudhari, P. Walke, U. Wankhede, R. Shelke, An experimental investigation of a nanofluid (AL2O3H2O) based parabolic trough solar collectors. Br. J. Appl. Sci. Technol. 9, 551–557 (2015)

    Article  Google Scholar 

  8. K.S. Jafar, B. Sivaraman, Thermal performance of solar parabolic trough collector using nanofluids and the absorber with nail twisted tapes inserts. Int. Energy J. 14, 189–198 (2014)

    Google Scholar 

  9. L. Zhang, J. Lv, M. Bai, D. Guo, Effect of vibration on forced convection heat transfer for SiO2 water nanofluids. Heat Transfer Eng. 36, 452–461 (2014)

    Article  Google Scholar 

  10. E. Bellos, C. Tzivanidis, K.A. Antonopoulos, A detailed working fluid investigation for solar parabolic trough collectors. Appl. Therm. Eng. 114, 374–386 (2017)

    Article  Google Scholar 

  11. A. Kasaeian, S. Daviran, R.D. Azarian, A. Rashidi, Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers. Manag. 89, 368–375 (2015)

    Article  Google Scholar 

  12. V. Khullar, H. Tyagi, P.E. Phelan, T.P. Otanicar, H. Singh, R.A. Taylor, Solar energy harvesting using nanofluids-based concentrating solar collector. J. Nanotechnol. Eng. Med. 3, 031003 (2013)

    Article  Google Scholar 

  13. K. Ajay, L. Kundan, Experimental and cfd investigation on the efficiency of parabolic solar collector involving AL2O3/H2O (di) nanofluid as a working fluid. Int. J. Renew. Energy Res. 6(2), 392–401 (2016)

    Google Scholar 

  14. E. Kaloudis, E. Papanicolaou, V. Belessiotis, Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model. Renew. Energy 97, 218–229 (2016)

    Article  Google Scholar 

  15. A. Mwesigye, Z. Huan, J.P. Meyer, Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with cu-therminolVP-1 nanofluid. Energy Convers. Manag. 120, 449–465 (2016)

    Article  Google Scholar 

  16. A. Mwesigye, I.H. Ylmaz, J.P. Meyer, Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-therminol VP-1 nanofluid. Renew. Energy 119, 844–862 (2018)

    Article  Google Scholar 

  17. A. Mwesigye, J.P. Meyer, Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Appl. Energy 193, 393–413 (2017)

    Article  Google Scholar 

  18. R.V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, A.G. Quiroga, Exergy analysis of parabolic trough solar receiver. Appl. Therm. Eng. 67, 579–586 (2014)

    Article  Google Scholar 

  19. S. Odeh, G. Morrison, M. Behnia, Modelling of parabolic trough direct steam generation solar collectors. Solar Energy 62, 395–406 (1998)

    Article  Google Scholar 

  20. O. Garcá-Valladares, N. Velázquez, Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers. Int. J. Heat Mass Transf. 52, 597–609 (2009)

    Article  Google Scholar 

  21. P. Daniel, Y. Joshi, A.K. Das, Numerical investigation of parabolic trough receiver performance with outer vacuum shell. Solar Energy 85, 1910–1914 (2011)

    Article  Google Scholar 

  22. M. Chandrasekar, S. Suresh, T. Senthilkumar, Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids a review. Renew. Sustain. Energy Rev. 16, 3917–3938 (2012)

    Article  Google Scholar 

  23. T. Sokhansefat, A. Kasaeian, F. Kowsary, Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew. Sustain. Energy Rev. 33, 636–644 (2014)

    Article  Google Scholar 

  24. Y. Wang, Q. Liu, J. Lei, H. Jin, Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions. Int. J. Heat Mass Transf. 82, 236–249 (2015)

    Article  Google Scholar 

  25. Y. Wang, J. Xu, Q. Liu, Y. Chen, H. Liu, Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid. Appl. Therm. Eng. 107, 469–478 (2016)

    Article  Google Scholar 

  26. Y.L. He, J. Xiao, Z.-D. Cheng, Y.-B. Tao, A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew. Energy 36, 976–985 (2011)

    Article  Google Scholar 

  27. M. Islam, M.A. Karim, S.C. Saha, S. Miller, P.K.D.V. Yarlagadda, Development of empirical equations for irradiance profile of a standard parabolic trough collector using monte carlo ray tracing technique. Adv. Mater. Res. 860–863, 180–190 (2013)

    Article  Google Scholar 

  28. R. Davarnejad, M. Jamshidzadeh, CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow. Eng. Sci. Technol. Int. J. 18, 536–542 (2015)

    Google Scholar 

  29. T. Sokhansefat, A. Kasaeian, M.J. Abbaspour, M. Sokhansefat, Numerical study of heat transfer enhancement by using Al2O3/synthetic oil nanofluid in a parabolic trough collector tube. World Acad. Sci. Eng. Technol. 69, 1154–1159 (2012)

    Google Scholar 

  30. S.E. Ghasemi, A.A. Ranjbar, Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study. J. Mol. Liq. 222, 159–166 (2016)

    Article  Google Scholar 

  31. M. Kumar, D. Patel, V. Sehrawat, T. Gupta, Experimental and cfd analysis of Cuo-H2O (di) nano fluid based parabolic solar trough collector. Int. J. Innovative Res. Sci. Eng. Technol. 5 (2016)

    Google Scholar 

  32. A.M. de Oliveira Siqueira, P.E.N. Gomes, L. Torrezani, E.O. Lucas, G.M. da Cruz Pereira, Heat transfer analysis and modeling of a parabolic trough solar collector: an analysis. Energy Procedia 57, 401–410 (2014)

    Google Scholar 

  33. W. Huang, P. Hu, Z. Chen, Performance simulation of a parabolic trough solar collector. Sol. Energy 86, 746–755 (2012)

    Article  Google Scholar 

  34. P.M. Zadeh, T. Sokhansefat, A. Kasaeian, F. Kowsary, A. Akbarzadeh, Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid. Energy 82, 857–864 (2015)

    Article  Google Scholar 

  35. M. Abid, T.A.H. Ratlamwala, U. Atikol, Performance assessment of parabolic dish and parabolic trough solar thermal power plant using nanofluids and molten salts. Int. J. Energy Res. 40, 550–563 (2015)

    Article  Google Scholar 

  36. Wani, N.A., Nandan, G.: Modelling of solar parabolic trough collector considering unsymmetrical heat flux. In: 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). No. 526–530, IEEE (2019)

    Google Scholar 

  37. S.E. Ghasemi, G.R.M. Ahangar, Numerical analysis of performance of solar parabolic trough collector with cu-water nanofluid. Int. J. Nano Dimension 5(3), 233–240 (2014)

    Google Scholar 

  38. A. Mwesigye, Z. Huan, Comparative thermal performance of a parabolic trough receiver with Cu-therminol®vp-1, Ag-therminol®vp-1 and Al2O3—therminol®vp-1 nanofluids, in Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition IMECE2016 (ASME, ed.), (2016, Phoenix, Arizona, USA, November 2016)

    Google Scholar 

  39. N. Basbous, M. Taqi, N. Belouaggadia, Numerical study of a parabolic trough collector using a nanofluid. Asian J. Curr. Eng. Maths 4, 40–44 (2015)

    Google Scholar 

  40. E. Bellos, C. Tzivanidis, K. Antonopoulos, G. Gkinis, Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew. Energy 94, 213–222 (2016)

    Article  Google Scholar 

  41. A. Mwesigye, J.P. Meyer, Heat transfer performance of a parabolic trough receiver using SWCNTs-therminolVP-1 nanofluids, in Volume 8: Heat Transfer and Thermal Engineering (ASME, 2017)

    Google Scholar 

  42. E. Bellos, C. Tzivanidis, Parametric investigation of nanofluids utilization in parabolic trough collectors. Therm. Sci. Eng. Prog. 2, 71–79 (2017)

    Google Scholar 

  43. A. Mwesigye, Z. Huan, J.P. Meyer, Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oilal 2 o 3 nanofluid. Appl. Energy 156, 398–412 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Nandan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nandan, G. (2020). Thermal Efficiency Enhancement of Solar Parabolic Trough Collector Using Nanofluids: A Recent Review. In: Jain, V., Kumar, V., Verma, A. (eds) Advances in Solar Power Generation and Energy Harvesting. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-3635-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3635-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3634-2

  • Online ISBN: 978-981-15-3635-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics