Skip to main content
Log in

Effect of MgO on the fluoride vaporization and crystallization of CaF2–CaO–Al2O3–(MgO) slag for vacuum electroslag remelting

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The vaporization and crystallization of CaF2–CaO–Al2O3 slags with different MgO contents for electroslag remelting were investigated by various analytical methods. The results show that the main volatiles from investigated slag with 8.8 mass% MgO content at 1723 K are CaF2 and AlF3 and contain trace MgF2. The mass loss of CaF2–CaO–Al2O3–(MgO) slag decreases with the increase of MgO content. The addition of MgO within 8.8 mass% has little effect on the viscosity of investigated slag, implying that the viscosity change is not the reason to inhibit the fluoride vaporization. At 1723 K, the vapor pressures of CaF2 and AlF3 decrease with the increase of MgO content; thus, fluoride vaporization becomes weak. The fluoride vaporization of slag with MgO addition under vacuum at 1823 K is also inhibited. The MgO addition can decrease the crystallization temperature of 11CaO·7Al2O3·CaF2, but excessive MgO addition can lead to the precipitation of MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Ref.[11])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu Y, Zhang Z, Li G, Wang Q, Wang L, Li B. Evolution of desulfurization and characterization of inclusions in dual alloy ingot processed by electroslag remelting. Steel Res Int. 2017;87:1700058. https://doi.org/10.1002/srin.201700058.

    Article  CAS  Google Scholar 

  2. Qi YF, Li J, Shi CB, Geng R, Zhang J. Effect of directional solidification in electroslag remelting on the microstructure and cleanliness of an austenitic hot-work die steel. ISIJ Int. 2018;58:1275–84. https://doi.org/10.2355/isijinternational.ISIJINT-2018-003.

    Article  CAS  Google Scholar 

  3. Liu Y, Wang X, Li G, Wang Q, Zhang Z, Li B. Role of vacuum on cleanliness improvement of steel during electroslag remelting. Vacuum. 2018;154:351–8. https://doi.org/10.1016/j.vacuum.2018.05.032.

    Article  CAS  Google Scholar 

  4. Dong YW, Jiang ZH, Cao YL, Yu A, Hou D. Effect of slag on inclusions during electroslag remelting process of die steel. Metall Mater Trans B. 2014;45:1315–24. https://doi.org/10.1007/s11663-014-0070-7.

    Article  CAS  Google Scholar 

  5. Steneholm K, Andersson M, Tilliander A, Jönsson PG. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmak Steelmak. 2013;40:199–205. https://doi.org/10.1179/1743281212Y.0000000029.

    Article  CAS  Google Scholar 

  6. Liu Y, Wang X, Li G, Huang X, Wang Q, Li B. Cleanliness improvement and microstructure refinement of ingot processed by vacuum electroslag remelting. J Mater Res Technol. 2020;9:1619–30. https://doi.org/10.1016/j.jmrt.2019.11.087.

    Article  CAS  Google Scholar 

  7. Huang X, Li B, Liu Z, Jiang T, Chai Y, Wu X. Oxygen transport behavior and characteristics of nonmetallic inclusions during vacuum electroslag remelting. Vacuum. 2019;164:114–20. https://doi.org/10.1016/j.vacuum.2019.03.014.

    Article  CAS  Google Scholar 

  8. Huang X, Li B, Liu Z, Li M. Numerical study on the effect of vacuum on oxygen transfer in electroslag remelting process. Vacuum. 2020;172:109069. https://doi.org/10.1016/j.vacuum.2019.109069.

    Article  CAS  Google Scholar 

  9. Shi CB, Li J, Cho JW, Jiang F, Jung IH. Effect of SiO2 on the crystallization behaviors and in-mold performance of CaF2–CaO–Al2O3 slags for drawing-ingot-type electroslag remelting. Metall Mater Trans B. 2015;45:2110–20. https://doi.org/10.1007/s11663-015-0402-2.

    Article  CAS  Google Scholar 

  10. Jiang ZH, Dong YW, Geng X, Liu F. Electroslag metallurgy. Beijing: Science Press; 2015.

    Google Scholar 

  11. Li ZB. Electroslag metallurgy theory and practice. Beijing: Metallurgical Industry Press; 2010.

    Google Scholar 

  12. Shinmei M, Machida T. Vaporization of AlF3 from the slag CaF2-Al2O3. Metall Trans. 1973;4:1996–7. https://doi.org/10.1007/BF02665432.

    Article  CAS  Google Scholar 

  13. Zaitsev AI, Leites AV, Lrtvina AD, Mogutnov BM. Investigation of the mould powder volatiles during continuous casting. Steel Res. 1994;65:368–74. https://doi.org/10.1002/srin.199401179.

    Article  CAS  Google Scholar 

  14. Brandaleze E, Valentini M, Santini L, Benavidez E. Study on fluoride evaporation from casting powders. J Therm Anal Calorim. 2018;133:271–7. https://doi.org/10.1007/s10973-018-7227-6.

    Article  CAS  Google Scholar 

  15. Viswanathan NN, Fatemeh S, Sichen D, Seetharaman S. Estimation of escape rate of volatile components from slags containing CaF2 during viscosity measurement. Steel Res. 1999;70:53–8. https://doi.org/10.1002/srin.199905600.

    Article  CAS  Google Scholar 

  16. Liu Y, Zhang Z, Li GQ, Wu Y, Xu DM, Li BK. Investigation of fluoride vaporization from CaF2–CaO–Al2O3 slag for vacuum electroslag remelting. Vacuum. 2018;158:6–13. https://doi.org/10.1016/j.vacuum.2018.09.027.

    Article  CAS  Google Scholar 

  17. Shi CB, Cho J, Zheng D, Li J. Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater. 2016;23:627–36. https://doi.org/10.1007/s12613-016-1275-3.

    Article  CAS  Google Scholar 

  18. Ju JT, Ji G, Tang C, Yang K, Zhu Z. The effect of Li2O on the evaporation and structure of low-fluoride slag for vacuum electroslag remelting. Vacuum. 2021;183:109920. https://doi.org/10.1016/j.vacuum.2020.109920.

    Article  CAS  Google Scholar 

  19. Wang XJ, Liu Y, Li GQ, Wang Q, Li TF, Cao YX. Effect of Ce2O3 on the fluoride vaporization of CaF2–CaO–Al2O3–(Ce2O3) slag used for vacuum electroslag remelting. Vacuum. 2021;185:109997. https://doi.org/10.1016/j.vacuum.2020.109997.

    Article  CAS  Google Scholar 

  20. Liu Y, Wang Y, Li GQ, Lu R, Li BK. Investigation on the structure, fluoride vaporization and crystallization behavior of CaF2–CaO–Al2O3–(SiO2) slag for electroslag remelting. J Therm Anal Calorim. 2020;139:923–31. https://doi.org/10.1007/s10973-019-08518-9.

    Article  CAS  Google Scholar 

  21. Gao YM, Wang SB, Hong C, Ma XJ, Yang F. Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system. Int J Miner Metall Mater. 2014;21:353–62. https://doi.org/10.1007/s12613-014-0916-7.

    Article  CAS  Google Scholar 

  22. Gao JX, Wen GH, Huang T, Tang P, Liu Q. Effects of the composition on the structure and viscosity of the CaO-SiO2-based mold flux. J Non-Cryst Solids. 2016;435:33–9. https://doi.org/10.1016/j.jnoncrysol.2016.01.001.

    Article  CAS  Google Scholar 

  23. Presoly P, Korp J, Schneider R. Electrical conductivity and corresponding specific energy consumption of new MgO-containing ESR-slags. Arch Metall Mater. 2008;53:567–74. https://doi.org/10.1108/00035590810913132.

    Article  CAS  Google Scholar 

  24. Dong YW, Jiang ZH, Cao YL, Zhang HK, Shen HJ. Effect of MgO and SiO2 on surface tension of fluoride containing slag. J Cent South Univ. 2014;21:4104–8.

    Article  CAS  Google Scholar 

  25. Peng LZ, Jiang ZH, Geng X. Design of ESR slag for remelting 9CrMoCoB steel under simple protective Ar gas. Metals. 2019;9:1300–12. https://doi.org/10.3390/met9121300.

    Article  CAS  Google Scholar 

  26. Gao EZ, Wang WL, Zhang L. Effect of alkaline earth metal oxides on the viscosity and structure of the CaO–Al2O3 based mold flux for casting high-al steels. J Non-Cryst Solids. 2017;473:79–86. https://doi.org/10.1016/j.jnoncrysol.2017.07.029.

    Article  CAS  Google Scholar 

  27. Ju JT, Li GH, Tang CM, An JL. Fluoride evaporation and melting characteristics of CaF2–CaO–Al2O3–MgO–Li2O–(TiO2) slag for electroslag remelting. Steel Res Int. 2020;91:2000111. https://doi.org/10.1002/srin.202000111.

    Article  CAS  Google Scholar 

  28. Zhang GH, Chou KC, Mills K. Modelling viscosities of CaO-MgO-Al2O3-SiO2 molten slags. ISIJ Int. 2012;52:355–62. https://doi.org/10.2355/isijinternational.52.355.

    Article  CAS  Google Scholar 

  29. Zhang GH, Chou KC, Mills K. A structurally based viscosity model for oxide melts. Metal Mater Trans B. 2014;45:698–706. https://doi.org/10.1007/s11663-013-9980-z.

    Article  CAS  Google Scholar 

  30. Jönsson PG, Jonsson L, Sichen D. Viscosities of LF slags and their impact on ladle refining. ISIJ Int. 1997;37:484–91. https://doi.org/10.2355/isijinternational.37.484.

    Article  Google Scholar 

  31. Xu JF, Zhang JY, Jie C, Ruan F, Chou KC. Experimental measurements and modelling of viscosity in CaO–Al2O3–MgO slag system. Ironmak Steelmak. 2011;38:329–37. https://doi.org/10.1179/1743281210Y.0000000014.

    Article  CAS  Google Scholar 

  32. Jiang ZH, Hou D, Dong YW, Cao YL, Cao HB, Gong W. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B. 2016;47:1465–74. https://doi.org/10.1007/s11663-015-0530-8.

    Article  CAS  Google Scholar 

  33. Hou D, Jiang Z, Dong Y, Cao Y, Cao H, Gong W. Thermodynamic design of electroslag remelting slag for high titanium and low aluminum stainless steel based on IMCT. Ironmak Steelmak. 2016;43:517–25. https://doi.org/10.1080/03019233.2015.1110920.

    Article  CAS  Google Scholar 

  34. Yang XM, Duan JP, Shi CB, Zhang M, Zhang YL, Wang JC. A thermodynamic model of phosphorus distribution ration between Cao–SiO2–MgO–FeO–Fe2O3–MnO–Al2O3–P2O5 slags and molten steel during a top-bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall Mater Trans B. 2011;42:738–70. https://doi.org/10.1007/s11663-011-9491-8.

    Article  CAS  Google Scholar 

  35. Yang XM, Shi CB, Zhang M, Zhang J. A thermodynamic model for prediction of iron oxide activity in some FeO-containing slag systems. Steel Res Int. 2012;83:244–58. https://doi.org/10.1002/srin.201100233.

    Article  CAS  Google Scholar 

  36. Brain I. Thermochemical data of pure substances. Weinheim: Wiley-vch Verlag Gmbh Press; 1995.

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Project Funded by National Natural Science Foundation of China (Grant No. 52004189) and China Postdoctoral Science Foundation (Grant No. 2019M660188).

Author information

Authors and Affiliations

Authors

Contributions

GL and YL conceived and designed the experiments; TL and XW performed the experiments; TL and YT analyzed the data; TL wrote the first draft of the manuscript; YL revised and approved the final version of the manuscript. YL and TL performed investigation; YL performed project administration and writing—review and editing; TL performed writing—original draft.

Corresponding author

Correspondence to Yu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Li, G., Liu, Y. et al. Effect of MgO on the fluoride vaporization and crystallization of CaF2–CaO–Al2O3–(MgO) slag for vacuum electroslag remelting. J Therm Anal Calorim 147, 11445–11455 (2022). https://doi.org/10.1007/s10973-022-11347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11347-y

Keywords

Navigation