Skip to main content
Log in

Thermal analysis of materials based on calcium sulphate derived from various sources

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The paper presents and discusses the results of raw materials investigations based on calcium sulphate derived from various origins. The aim of these investigations was the evaluation of perspectives of using flue gas desulfurization gypsum (FGDG) as a potential raw material in the fertilizer industry, in comparison with the currently applied raw materials and others (anhydrite, natural gypsum, phosphogypsum, synthetic building plaster). To preview a new potential industrial application of FGDG, the investigations were focused on thermal analysis (thermogravimetry, differential scanning calorimetry) coupled with mass spectrometry, X-ray fluorescence, Fourier transform infrared spectroscopy and inductively coupled plasma optical emission spectroscopy. The chemical composition and thermal analysis of FGD gypsums in comparison with other samples based on CaSO4 revealed their high purity with low concentration of impurities and heavy metals. Only for one FGDG sample, the concentration of mercury exceeded the acceptable limit. The FGD gypsums seem to be attractive raw materials in the fertilizer industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lou W, Guan B, Wu Z. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. J Therm Anal Calorim. 2011;104:661–9.

    Article  CAS  Google Scholar 

  2. Engbrecht DC, Hirschfeld DA. Thermal analysis of calcium sulfate dehydrate sources used to manufacture gypsum wallboard. Thermochim Acta. 2016;639:173–85.

    Article  CAS  Google Scholar 

  3. Gorbovskiy KG, Ryashko AI, Kazakov AI, Norov AM, Mikhaylichenko AI. The influence of water-soluble impurities on thermal dehydration kinetics of phosphogypsum in self-generated atmosphere. J Therm Anal Calorim. 2018;133:1549–62.

    Article  CAS  Google Scholar 

  4. De Korte A (2015) Hydration and thermal decomposition of cement/calcium sulphate based materials, Doctoral dissertation.

  5. Galos K, Szlugaj J, Burkowicz A. Sourses of limestone sorbents for flue gas desulphurization in Poland in the context of the needs of domestic power industry. Energy Policy J. 2016;19(2):149–70.

    Google Scholar 

  6. Cordoba P. Status of Flue Gas Desulphurization (FGD) system from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs. Fuel. 2015;144:274–86.

    Article  CAS  Google Scholar 

  7. Koralegedara NH, Pinto PX, Dionysiou DD, Al-Abed SR. Resent advances in flue gas desulfurization gypsum processes and applications – A review. J Environ Manage. 2019;251:109572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scheinherrova L, Dolezelova M, Havlin J, Trnik A. Thermal analysis of ternary gypsum-based binders stored in different environments. J Therm Anal Calorim. 2018;133:177–88.

    Article  CAS  Google Scholar 

  9. Pang M, Sun Z, Huang H. Compressive strength and durability of FGD gypsum-based mortars blended with ground granulated blast furnace slag. Materials. 2020;13:3383.

    Article  CAS  PubMed Central  Google Scholar 

  10. Phutthimenthakul L, Kumpueng P, Supakata N. Use of flue gas desulfurization gypsum, construction and demolition waste, and oil palm waste trunks to produce concrete bricks. Curr Comput-Aided Drug Des. 2020;10:709.

    Google Scholar 

  11. Wang J, Yang P. Potential flue gas desulfurization gypsum utilization in agriculture: a comprehensive review. Renew Sustain Energy Rev. 2018;82:1969–78.

    Article  CAS  Google Scholar 

  12. Presley D (2016) Effects of flue gas desulfurization gypsum on crop yield and soil properties in Kansas, Kansas agricultural experiment station research reports. Vol. 2: Iss. 5.

  13. Chen L, Dick WA (2011) Gypsum as an agricultural amendment: general use guidelines. https://fabe.osu.edu/sites/fabe/files/imce/files/Soybean/Gypsum%20Bulletin.pdf. Accessed 10.09.2021

  14. Uberman R, Naworyta W. The importance of anthropogenic deposits construction for secondary raw materials on the example of synthetic gypsum. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi Polskiej Akademii Nauk. 2018;106:211–24.

    Google Scholar 

  15. Szlugaj J, Galos K. Limestone sorbents market for flue gas desulphurization in coal-fired power plants in the context of the transformation of the power industry - A case of Poland. Energies. 2021;14:4275.

    Article  Google Scholar 

  16. Jaworski T, Grochowska S. Circular Economy – the criteria for achieving and the prospect of implementation in Poland. Archiwum Gospodarki Odpadami i Ochrony Środowiska. 2017;19(4):13–22.

    Google Scholar 

  17. Smol M. Transition to circular economy in the fertilizer sector-analysis of recommended directions and end-users’ perception of waste-based products in Poland. Energies. 2021;14:4312.

    Article  CAS  Google Scholar 

  18. Chernysh Y, Yakhnenko O, Chubur V, Roubík H. Phosphogypsum recycling: a review of environmental issues, current trends and prospects. Appl Sci. 2021;11:1575.

    Article  CAS  Google Scholar 

  19. Malinowski P, Biskupski A, Głowiński J. Preparation methods of calcium sulphate and urea adduct. Pol J Chem Technol. 2007;9(4):111–4.

    Article  CAS  Google Scholar 

  20. Malinowski P, Borowik M, Wantuch W, Urbańczyk L, Dawidowicz M, Biskupski A. Utilization of waste gypsum in fertilizer production. Pol J Chem Technol. 2014;16(1):45–7.

    Article  CAS  Google Scholar 

  21. Sadłowski M, Grzmil B, Lubkowski K, Łuczka K. Separation of urea adducts in the analysis of complex mineral fertilizers. Chem Pap. 2016;70(3):315–24.

    Article  CAS  Google Scholar 

  22. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilizing products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003.

  23. Rutherford PM, Dudas MJ, Arocena JM. Radioactivity and elemental composition of phosphogypsum produced from three phosphate rock sources. Waste Manag Res. 1995;13:407–23.

    Article  CAS  Google Scholar 

  24. Caillahua CM, Moura FJ. Technical feasibility for use of FDG gypsum as an additive setting time retarder for Portland cement. J Mater Res Technol. 2018;7(2):190–7.

    Article  CAS  Google Scholar 

  25. Zhao S, Duan Y, Lu J, Gupta R, Pudasainee D, Liu S, Liu M, Lu J. Thermal stability, chemical speciation and leaching characteristics of hazardous trace elements in FGD gypsum from coal-fired power plants. Fuel. 2018;231:94–100.

    Article  CAS  Google Scholar 

  26. Saadaoui E, Ghazel N, Romdhane BC, Massoudi N. Phosphogypsum: potential uses and problems – a review. Int J Environ Sci. 2017;74(4):558–67.

    CAS  Google Scholar 

  27. Liptay G (1975) Atlas of Termochemical curves, Akadémiai Kiadó, Budapest 1975, p. 19.

  28. Biskupski A, Myka A, Borowik M, Malinowski P. Evaluation of reactivity of carbonate filler powders applied in nitrogen fertilizer technology. Przem Chem. 2013;92:1341–5.

    CAS  Google Scholar 

  29. Fukami T, Tahara S, Nakasone K, Yasuda Ch. Synthesis, crystal structure and thermal properties of CaSO4·2H2O single crystals. Int J Chem. 2015;7(2):12–20.

    Article  CAS  Google Scholar 

  30. Hazzat M, Sifou A, Arsalane S, Hamidi A. Novel approach to thermal degradation kinetics of gypsum: application of peak deconvolution and model-free isoconversional method. J Therm Anal Calorim. 2020;140:657–71.

    Article  CAS  Google Scholar 

  31. Strydom CA, Potgieter JH. Dehydration behavior of a natural gypsum and a phosphogypsum during milling. Thermochim Acta. 1999;332:89–96.

    Article  CAS  Google Scholar 

  32. Borrachero MV, Paya J, Bonilla M, Monzo J. The use of thermogravimetric analysis technique for the characterization of construction materials. The gypsum case. J Therm Anal Calorim. 2008;91(2):503–9.

    Article  CAS  Google Scholar 

  33. Ennaciri Y, Bettach M, Cherrat A, Zegzouti A. Conversion of phosphogypsum to sodium sulfate and calcium carbonate in aqueous solution. J Mater Envir Sci. 2016;7(6):1925–33.

    CAS  Google Scholar 

  34. Singh M, Garg M, Verma SK, Kumar R, Kumar H. An improved process for the purification of phosphogypsum. Constr Build Mater. 1996;10(8):597–600.

    Article  Google Scholar 

  35. Barbarossa V, Brutti S, Diamanti M, Sau S, De Maria G. Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production. Int J Hydrog Energy. 2006;31:883–90.

    Article  CAS  Google Scholar 

  36. Anderson C, Galwey AK. A kinetic study of the thermal dehydration of calcium sulphite hemihydrate. Can J Chem. 1992;70:2468–75.

    Article  CAS  Google Scholar 

  37. Fernandez J, Gonzalez F, Pesquera C, Junior AN, Viana MM, Dweck J. Qualitative and quantitative characterization of a coal power plant waste by TG/DSC/MS, XRF and XRD. J Therm Anal Calorim. 2016;125:703–10.

    Article  CAS  Google Scholar 

  38. Zhao L, Wan T, Yang X, Yang L, Kong X, Zhang Z, Wang X. Effects of kaolinite addition on the melting characteristics of the reaction between phosphogypsum and CaS. J Therm Anal Calorim. 2015;119:2119–26.

    Article  CAS  Google Scholar 

  39. Lisnic R, Jinga SI. Study on current state and future trends of flue gas desulphurization technologies: a review. Rom J Mater. 2018;48(1):83–90.

    CAS  Google Scholar 

  40. Smol M, Kulczycka J. Possibilities in the use of waste as a source of critical raw material in fertilizer sector – implementing the principles of the circular economy (CE) – phosphorus case study (in Polish). W Mikrozanieczyszczenia w ściekach, odpadach i środowisku, Wydawnictwo Politechniki Częstochowskiej. 2018;345(24):331–48.

    Google Scholar 

  41. Hoffmann J, Kaniewski M, Nieweś D, Hoffmann K. Selected magnesium compounds as possible inhibitors of ammonium nitrate decomposition. Pol J Chem Technol. 2020;22(2):1–8.

    Article  CAS  Google Scholar 

  42. Sebbahi S, Chameikh ML, Sahban F, Aride J, Benarafa L, Belkbir L. Thermal behavior of Moroccan phosphogypsum. Thermochim Acta. 1997;302:69–75.

    Article  CAS  Google Scholar 

  43. Shen Y, Qian J, Chai J, Fan Y. Calcium sulfoaluminate cements made with phosphogypsum: Production issues and material properties. Cem Concr Compos. 2014;48:67–74.

    Article  CAS  Google Scholar 

  44. Wagner M (2017) Thermal analysis in practice. Fundamental aspects. p 101.

  45. Ennaciri Y, Bettach M, Cherrat A, Zegzouti A. Conversion of phosphogypsum to sodium sulfate and calcium carbonate in aqueous solution. J Mater Environ Sci. 2016;16:1925–33.

    Google Scholar 

  46. Hass M, Sutherlandt GBBM. The infra-red spectrum and crystal structure of gypsum. Proc R Soc London Ser A Math Phys Sci. 1956;236:427–45.

    CAS  Google Scholar 

  47. Prakash KA, Rajdeo SM. Vibrational spectroscopy and SEM-EDX analysis of wall painted surfaces, Orchha Fort. India J Archaeol Sci Rep. 2019;24:434–44.

    Google Scholar 

  48. Holly S, Sohar P. Absorption spectra in the infrared region. Budapest: Akademiai Kiado; 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Myka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 658 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myka, A., Łyszczek, R., Zdunek, A. et al. Thermal analysis of materials based on calcium sulphate derived from various sources. J Therm Anal Calorim 147, 9923–9934 (2022). https://doi.org/10.1007/s10973-022-11319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11319-2

Keywords

Navigation