Skip to main content
Log in

The effect of cellulose derivatives on paracetamol crystallinity reduction

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The amorphous forms of most active pharmaceutical substances are widely applied in solid dosage form technology because they are characterized by a better solubility and dissolution rate than their crystalline forms. With the amorphization of a crystalline active substance being the greatest challenge to be overcome in pharmaceutical technology, the aim of this study was to assess to what extent polymeric excipients such as cellulose derivatives affect the crystallinity of paracetamol, over-the-counter analgesic and antipyretic substance. To realize this purpose, binary physical mixtures containing 10, 30, 50, 70 and 90% of paracetamol were gently homogenized in a porcelain mortar with cellulose derivatives such as four kinds of hydroxypropyl methyl cellulose (HPMC) differing in their molecular masses and methylcellulose (MC). Differential scanning calorimetry (DSC) and spectroscopic techniques like Fourier transform infrared (FTIR) and Raman were applied as tools for evaluating the degree of paracetamol crystallinity reduction. The findings of these experiments revealed that cellulose derivatives do indeed reduce the degree of paracetamol crystallinity; however, the effect of the particular polymeric excipients did not show any statistically significant difference. Formation of metastable modification III of paracetamol was also confirmed, a modification which can be created in mixtures containing at least 10% of cellulose derivatives. In brief, all the HPMCs and MC examined affect the crystallinity of paracetamol to a similar degree. Furthermore, the degree of active substance crystallinity decreases as the content of cellulose derivatives in the mixture increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.

    Google Scholar 

  2. Marques-Marinho FD, Vianna-Soares CD. Cellulose and its derivatives use in the pharmaceutical compounding practice. In: Van De Ven TGM, editor. Cellulose—medical, pharmaceutical and electronic applications. London: Intechopen; 2013. p. 141–62. https://doi.org/10.5772/56637.

    Chapter  Google Scholar 

  3. Patel R, Barker J, El Shaer A. Pharmaceutical excipients and drug metabolism: a mini-review. Int J Mol Sci. 2020;21:8224. https://doi.org/10.3390/ijms21218224.

    Article  CAS  PubMed Central  Google Scholar 

  4. Rashid R, Kim DW, Din FU, Mustapha O, Yousaf AM, Park JH, Kim JO, Yong CS, Choi HG. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydr Polym. 2015;130:26–31. https://doi.org/10.1016/j.carbpol.2015.04.071.

    Article  CAS  PubMed  Google Scholar 

  5. Yan YD, Sung JH, Kim KK, Kim DW, Kim JO, Lee BJ, Yong CS, Choi HG. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm. 2011;422:202–10. https://doi.org/10.1016/j.ijpharm.2011.10.053.

    Article  CAS  PubMed  Google Scholar 

  6. Xu W-J, Xie H-J, Cao Q-R, Shi L-L, Cao Y, Zhu X-Y, Cui J-H. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers. Drug Deliv. 2016;23:41–8. https://doi.org/10.3109/10717544.2014.903012.

    Article  CAS  PubMed  Google Scholar 

  7. Negm AA, Furst DE. Nonsteroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs, nonopioid analgesics & drugs used in gout. In: Katzung BG, editor. Basic & clinical pharmacology. 14th ed. Toronto: McGraw Hill; 2017.

    Google Scholar 

  8. Bernal V, Erto A, Giraldo L, Moreno-Piraján JC. Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons. Molecules. 2017;22:1032. https://doi.org/10.3390/molecules22071032.

    Article  CAS  PubMed Central  Google Scholar 

  9. European Medicines Agency. Paracetamol oral use, immediate release formulations product-specified bioequivalence guidance. London: Committee for Medicinal Products for Human Use; 2018. https://www.ema.europa.eu/en/documents/scientific-guideline/paracetamol-oral-use-immediate-release-formulations-product-specific-bioequivalence-guidance-first_en.pdf.

  10. European Pharmacopoeia. 10th ed. Paris: Strasbourg Cedex; 2019. Monograph Paracetamol, p. 3481. https://pheur.edqm.eu/app/10-5/content/10-5/0049E.htm.

  11. Gaisford S, Buanz ABM, Jethwa N. Characterisation of paracetamol form III with rapid-heating DSC. J Pharm Biomed Anal. 2010;53:366–70. https://doi.org/10.1016/j.jpba.2010.04.017.

    Article  CAS  PubMed  Google Scholar 

  12. Sibik J, Sargent MJ, Franklin M, Zeitler JA. Crystallization and phase changes in paracetamol from the amorphous solid to the liquid phase. Mol Pharm. 2014;11:1326–34. https://doi.org/10.1021/mp400768m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cruz PC, Rocha FA, Ferreira AM. Application of selective crystallization methods to isolate the metastable polymorphs of paracetamol: a review. Org Process Res Dev. 2019;23:2592–607. https://doi.org/10.1021/acs.oprd.9b00322.

    Article  CAS  Google Scholar 

  14. Perrin MA, Neumann MA, Elmaleh H, Zaske L. Crystal structure determination of the elusive paracetamol Form III. Chem Commun. 2009;22:3181–3. https://doi.org/10.1039/b822882e.

    Article  CAS  Google Scholar 

  15. Telford R, Seaton CC, Clout A, Buanz A, Gaisford S, Williams GR, Prior TJ, Okoye CH, Munshi T, Scowen IJ. Stabilisation of metastable polymorphs: the case of paracetamol form III. Chem Commun. 2016;52:12028–31. https://doi.org/10.1039/c6cc05006a.

    Article  CAS  Google Scholar 

  16. Ogienko AG, Boldyreva EV, Manakov AY, Boldyrev VV, Yunoshev AS, Ogienko AA, Myz SA, Ancharov AI, Achkasov AF, Drebushchak TN. A new method of producing monoclinic paracetamol suitable for direct compression. Pharm Res. 2011;28:3116–27. https://doi.org/10.1007/s11095-011-0502-x.

    Article  CAS  PubMed  Google Scholar 

  17. Rams-Baron M, Jachowicz R, Boldyreva E, Zhou D, Jamroz W, Paluch M. Amorphous drugs. Benefits and challenges. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-72002-9.

    Book  Google Scholar 

  18. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75. https://doi.org/10.1016/j.drudis.2007.09.005.

    Article  CAS  PubMed  Google Scholar 

  19. Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv. 2020;27:110–27. https://doi.org/10.1080/10717544.2019.1704940.

    Article  CAS  PubMed  Google Scholar 

  20. Leyk E, Wesolowski M. Interactions between paracetamol and hypromellose in the solid state. Front Pharmacol. 2019;10:14. https://doi.org/10.3389/fphar.2019.00014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malviya R, Srivastava P, Bansal M, Sharma PK. Improvement of dissolution behavior of paracetamol using solid dispersion technique. Int J Pharm Sci Res. 2010;1:95–9. https://doi.org/10.13040/IJPSR.0975-8232.1(7).95-99.

    Article  CAS  Google Scholar 

  22. Singh A, Sharma PK, Meher JG, Malviya R. Evaluation of enhancement of solubility of paracetamol by solid dispersion technique using different polymers concentration. Asian J Pharm Clin Res. 2011;4:117–9.

    CAS  Google Scholar 

  23. Laitinen R, Löbmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453:65–79. https://doi.org/10.1016/j.ijpharm.2012.04.066.

    Article  CAS  PubMed  Google Scholar 

  24. Qi S, Avalle P, Saklatvala R, Craig DQM. An investigation into the effects of thermal history on the crystallisation behaviour of amorphous paracetamol. Eur J Pharm Biopharm. 2008;69:364–71. https://doi.org/10.1016/j.ejpb.2007.10.008.

    Article  CAS  PubMed  Google Scholar 

  25. Politov AA, Kostrovskii VG, Boldyrev VV. Conditions of preparation and crystallization of amorphous paracetamol. Rus J Phys Chem A. 2001;75:1903–11.

    Google Scholar 

  26. Shtukenberg AG, Tan M, Vogt-Maranto L, Chan EJ, Xu W, Yang J, Tuckerman ME, Hu CT, Kahr B. Melt crystallization for paracetamol polymorphism. Cryst Growth Des. 2019;19:4070–80. https://doi.org/10.1021/acs.cgd.9b00473.

    Article  CAS  Google Scholar 

  27. Tombari E, Ferrari C, Johari GP, Shanker RM. Calorimetric relaxation in pharmaceutical molecular glasses and its utility in understanding their stability against crystallization. J Phys Chem B. 2008;112:10806–14. https://doi.org/10.1021/jp801794a.

    Article  CAS  PubMed  Google Scholar 

  28. Gunawan L, Johari GP, Shanker RM. Structural relaxation of acetaminophen glass. Pharm Res. 2006;23:967–79. https://doi.org/10.1007/s11095-006-9898-0.

    Article  CAS  PubMed  Google Scholar 

  29. Perlovich GL, Volkova TV, Bauer-Brandl A. Polymorphism of paracetamol. Relative stability of the monoclinic and orthorhombic phase revisited by sublimation and solution calorimetry. J Therm Anal Calorim. 2007;89:767–74. https://doi.org/10.1007/s10973-006-7922-6.

    Article  CAS  Google Scholar 

  30. Boldyreva EV, Drebushchak VA, Paukov IE, Kovalevskaya YA, Drebushchak TN. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. An old problem revisited. J Therm Anal Calorim. 2004;77:607–23. https://doi.org/10.1023/B:JTAN.0000038998.47606.27.

    Article  CAS  Google Scholar 

  31. Martínez LM, Videa M, López-Silva GA, Reyes CA, Cruz-Angeles J, González N. Stabilization of amorphous paracetamol based systems using traditional and novel strategies. Int J Pharm. 2014;477:294–305. https://doi.org/10.1016/j.ijpharm.2014.10.021.

    Article  CAS  PubMed  Google Scholar 

  32. Mohammed H, Briscoe BJ, Pitt KG. A study on the coherence of compacted binary composites of microcrystalline cellulose and paracetamol. Eur J Pharm Biopharm. 2006;63:19–25. https://doi.org/10.1016/j.ejpb.2005.10.001.

    Article  CAS  PubMed  Google Scholar 

  33. Yu HCM, Rubinstein MH, Jackson IM, Elsabbagh HM. Multiple compression and plasto-elastic behaviour of paracetamol and microcrystalline cellulose mixtures. J Pharm Pharmacol. 1988;40:669–73. https://doi.org/10.1111/j.2042-7158.1988.tb06992.x.

    Article  CAS  PubMed  Google Scholar 

  34. Wahlberg N, Madsen AØ, Mikkelsen KV. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer–molecule interactions using a Coulomb and van der Waals model. J Mol Model. 2018;24:155. https://doi.org/10.1007/s00894-018-3664-1.

    Article  CAS  PubMed  Google Scholar 

  35. Dichi E, Sghaier M, Guiblin N. Reinvestigation of the paracetamol-caffeine, aspirin-caffeine, and paracetamol-aspirin phase equilibria diagrams. J Therm Anal Calorim. 2018;131:2141–55. https://doi.org/10.1007/s10973-017-6855-6.

    Article  CAS  Google Scholar 

  36. Caliandro R, Di Profio G, Nicolotti O. Multivariate analysis of quaternary carbamazepine-saccharin mixtures by X-ray diffraction and infrared spectroscopy. J Pharm Biomed Anal. 2013;78–79:269–79. https://doi.org/10.1016/j.jpba.2013.01.042.

    Article  CAS  PubMed  Google Scholar 

  37. Jendrzejewska I, Goryczka T, Pietrasik E, Klimontko J, Jampilek J. X-ray and thermal analysis of selected drugs containing acetaminophen. Molecules. 2020;25:5909. https://doi.org/10.3390/molecules25245909.

    Article  CAS  PubMed Central  Google Scholar 

  38. Klìmová K, Leitner J. DSC study and phase diagrams calculation of binary systems of paracetamol. Thermochim Acta. 2012;550:59–64. https://doi.org/10.1016/j.tca.2012.09.024.

    Article  CAS  Google Scholar 

  39. Giordano F, Rossi A, Bettini R, Savioli A, Gazzaniga A, Novák C. Thermal behavior of paracetamol-polymeric excipients mixtures. J Therm Anal Calorim. 2002;68:575–90. https://doi.org/10.1023/A:1016004206043.

    Article  CAS  Google Scholar 

  40. Burgina EB, Baltakhinov VP, Boldryeva EV, Shakhtschneider TP. IR spectra of paracetamol and phenacetin. J Struct Chem. 2004;45:64–73. https://doi.org/10.1023/B:JORY.0000041502.85584.d5.

    Article  CAS  Google Scholar 

  41. Łuczak A, Jallo LJ, Dave RD, Iqbal Z. Polymorph stabilization in processed acetaminophen powders. Powder Technol. 2013;236:52–62. https://doi.org/10.1016/j.powtec.2012.05.046.

    Article  CAS  Google Scholar 

  42. Zimmerman B, Baranović G. Thermal analysis of paracetamol polymorphs by FT-IR spectroscopies. J Pharm Biomed Anal. 2011;54:295–302. https://doi.org/10.1016/j.jpba.2010.08.023.

    Article  CAS  Google Scholar 

  43. Łojewska J, Miśkowieca P, Łojewski T, Proniewicz LM. Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab. 2005;88:512–20. https://doi.org/10.1016/j.polymdegradstab.2004.12.012.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Science and Higher Education, Poland, Grant Number 02-0015/07/505.

Author information

Authors and Affiliations

Authors

Contributions

EL helped in conceptualization, methodology, software, formal analysis, investigation, data curation, writing–original draft preparation, writing–review and editing. MW performed conceptualization, writing–original draft preparation, writing–review and editing, supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Marek Wesolowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leyk, E., Wesolowski, M. The effect of cellulose derivatives on paracetamol crystallinity reduction. J Therm Anal Calorim 147, 10037–10048 (2022). https://doi.org/10.1007/s10973-022-11312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11312-9

Keywords

Navigation