Skip to main content
Log in

Heterogeneous nucleation of polymorphs on polymer surfaces: polymer–molecule interactions using a Coulomb and van der Waals model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The nucleation processes of acetaminophen on poly(methyl methacrylate) and poly(vinyl acetate) have been investigated and the mechanisms of the processes are studied. This is achieved by a combination of theoretical models and computational investigations within the framework of a modified QM/MM method; a Coulomb–van der Waals model. We have combined quantum mechanical computations and electrostatic models at the atomistic level for investigating the stability of different orientations of acetaminophen on the polymer surfaces. Based on the Coulomb–van der Waals model, we have determined the most stable orientation to be a flat orientation, and the strongest interaction is seen between poly(vinyl acetate) and the molecule in a flat orientation in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Fox D, Labes MM (1965) Physics and Chemistry of Organic Solid State, vol. 2. Eds. Wiley Interscience, New York

    Google Scholar 

  2. Buerger MJ (1937) Crystal polymorphism. Z Kristallogr 96(2/3):182–200

    CAS  Google Scholar 

  3. Bernstein J (2003) Polymorphism in Molecular Crystals. Oxford

  4. Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J (2001) Pharm Res 18:859–866

    Article  CAS  PubMed  Google Scholar 

  5. Wöhler F, von Liebig J (1832) Ann Pharm 3:249–282

    Article  Google Scholar 

  6. ccdc. statistics, October 2011. URL http://www.ccdc.cam.ac.uk/products/csd/statistics/

  7. McCrone WC (1965) In Physics and Chemistry of the Organic Solid State, edited by Fox, D; Labes, M; Weissberger, MM. Interscience, New York

    Google Scholar 

  8. Pesti JA, Chorvat RJ, Huhn GF (2000) A better drug for Alzheimer’s Chem Innov 30(10):28–37

    CAS  Google Scholar 

  9. Stahly GP (2007) Diversity in single- and multiple-component crystals. the search for and prevalence of polymorphs and cocrystals. Cryst Growth Des 7:1007–1026

    Article  CAS  Google Scholar 

  10. Grunenberg A, Henck JO, Siesler HW (1996) Int J Pharm 129:147–158

    Article  CAS  Google Scholar 

  11. Di Martino P, Conflant P, Drache M, Huvenne JP, Guyot-Hermann AM (1997) Preparation and physical characterization of forms II and III of paracetamol. J Therm Anal Calorim 48:447–458. https://doi.org/10.1007/BF01979491

    Article  CAS  Google Scholar 

  12. Haisa M, Kashino S, Kawai R, Maeda H (1976) The monoclinic form of p-hydroxyacetanilide. Acta Crystallogr Sect B 32(4):1283–1285

    Article  Google Scholar 

  13. Haisa M, Kashino S, Maeda H (1974) The orthorhombic form of p-hydroxyacetanilide. Acta Crystallogr Sect B 30(10):2510–2512

    Article  Google Scholar 

  14. Boldyreva E, Shakhtshneider T, Ahsbahs H, Sowa H, Uchtmann H (2002) Effect of high pressure on the polymorphs of paracetamol. J Therm Anal Calorim 68:437–452. https://doi.org/10.1023/A:1016079400592

    Article  CAS  Google Scholar 

  15. Boldyreva E, Drebushchak V, Paukov I, Kovalevskaya Y, Drebushchak T (2004) DSC and adiabatic calorimetry study of the polymorphs of paracetamol. J Therm Anal Calorim 77:607–623. https://doi.org/10.1023/B:JTAN.0000038998.47606.27

    Article  CAS  Google Scholar 

  16. Espeau P, Colin R, Tamarit J-L, Perrin M-A, Gauchi J-P, Leveiller F (2005) Polymorphism of paracetamol: Relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure–temperature and temperature–volume phase diagrams. J Pharm Sci 94(3):524–539

    Article  CAS  PubMed  Google Scholar 

  17. Martino PD, Guyot-Hermann A-M, Conflant P, Drache M, Guyot J-C (1996) A new pure paracetamol for direct compression: The orthorhombic form. Int J Pharm 128(12):1–8

    Article  CAS  Google Scholar 

  18. Burger A, Ramberger R (1979) On the polymorphism of pharmaceuticals and other molecular crystals. II - applicability of thermodynamic rules. Mikrochimica Acta II:273–316

    Article  Google Scholar 

  19. Sacchetti M (2000) Thermodynamic analysis of DSC data for acetaminophen polymorphs. J Therm Anal Calorim 63:345–350. https://doi.org/10.1023/A:1010180123331

    Article  Google Scholar 

  20. Perlovich G, Volkova T, Bauer-Brandl A (2007) Polymorphism of paracetamol. J Therm Anal Calorim 89:767–774. https://doi.org/10.1007/s10973-006-7922-6

    Article  CAS  Google Scholar 

  21. Lang MD, Grzesiak A L, Matzger AJ (2002) J Am Chem Soc 124:14834–16835

    Article  CAS  PubMed  Google Scholar 

  22. Liberski AR, Tizzard GJ, Diaz-Mochon JJ, Hursthouse MB, Milnes P, Bradley M (2008) Screening for polymorphs on polymer microarrays. J Comb Chem 10(1):24–27. PMID: 18166017

    Article  CAS  PubMed  Google Scholar 

  23. Lopez-Mejias V, Knight JL, Brooks CL, Matzger AJ (2011) On the mechanism of crystalline polymorph selection by polymer heteronuclei. Langmuir 27(12):7575–7579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McClelland AA, Lopez-Mejias V, Matzger AJ, Chen Z (2011) Peering at a buried polymer–crystal interface: Probing heterogeneous nucleation by sum frequency generation vibrational spectroscopy. Langmuir 27 (6):2162–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wahlberg N, Madsen AØ, Mikkelsen KV Heterogeneous nucleation of polymorphs on polymer surfaces: polymer-molecule interactions using a heterogeneous dielectric solvation model. J. Mol. Mod., accepted, https://doi.org/10.1007/s00894-018-3657-0

  26. Freindorf M, Gao J (1996) Optimization of the Lennard–Jones parameters for a combined ab initio quantum mechanical and molecular mechanical potential using the 3-21g basis set. J Comput Chem 17(4):386–395

    Article  CAS  Google Scholar 

  27. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11(3):361–373

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ã, Foresman JB, Ortiz J V, Cioslowski J, Fox D (2010) Gaussian 09 Revision B.1. Gaussian Inc., Wallingford CT

  29. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange correlation functional using the coulomb-attenuating method (cam-b3lyp). Chem Phys Lett 393(1-3):51–57

    Article  CAS  Google Scholar 

  30. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. the atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  31. Kendall RA Jr, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806

    Article  CAS  Google Scholar 

  32. Wang J, Chen C, Buck SM, Chen Z (2001) Molecular chemical structure on poly(methyl methacrylate) (PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy. J Phys Chem B 105(48):12118–12125

    Article  CAS  Google Scholar 

  33. Clarke ML, Chen Z (2006) Polymer surface reorientation after protein adsorption. Langmuir 22(21):8627–8630

    Article  CAS  PubMed  Google Scholar 

  34. Scott CE (2012) Polymerprocessing.com. http://www.polymerprocessing.com/polymers/PVAC.html

  35. MakeItForum.com, August 2012. http://www.makeitfrom.com/compare-materials/?A=Polymethylmethacrylate-PMMA-Acrylic-Plexiglas&B=Soda-Lime-Glass

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt V. Mikkelsen.

Additional information

This paper belongs to Topical Collection XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahlberg, N., Madsen, A.Ø. & Mikkelsen, K.V. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer–molecule interactions using a Coulomb and van der Waals model. J Mol Model 24, 155 (2018). https://doi.org/10.1007/s00894-018-3664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3664-1

Keywords

Navigation