Skip to main content
Log in

Some aspects of Cu incorporation into SrTiO3 structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The series of copper-doped strontium titanate materials with the assumed formula SrTi1−xCuxO3 (where x = 0.01, 0.02, 0.05) were obtained by the sol–gel method. The synthesis of materials was undertaken towards evaluation of the possibility of their application in modern technologies in the field of energy storage and conversion. Materials were obtained in the form of powders and sintered bodies. Both types of these materials were tested for structural (XRD analysis), microstructural (SEM), reduction-oxidizing properties (TPR/TPOx methods). For sinters also electrical properties (conductivity and Seebeck coefficient) were determined. The phase composition analysis and the TPR results showed significant differences between the samples in the form of powders and sinters. The influence of copper oxide melting on the materials properties was observed. The measurements of the Seebeck coefficient confirm that copper is an acceptor dopant for strontium titanate. The results of total conductivity measurements carried out in the air atmosphere indicate that the addition of copper causes an increase in conductivity, with the highest value obtained for the material with the highest amount of copper introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fuchs D, Schneider CW, Schneider R, Rietschel H. High dielectric constant and tunability of epitaxial SrTiO3 thin film capacitors. J Appl Phys. 1999;85:7362. https://doi.org/10.1063/1.369363.

    Article  CAS  Google Scholar 

  2. Noll F, Münch W, Denk I, Maier J. SrTiO3 as a prototype of a mixed conductor conductivities, oxygen diffusion and boundary effects. Solid State Ion. 1996;86–88:711–7. https://doi.org/10.1016/0167-2738(96)00155-5.

    Article  Google Scholar 

  3. Ramamoorthy R, Dutta PK, Akbar SA. Oxygen sensors: materials, methods, designs and applications. J Mater Sci. 2003;38:4271–82. https://doi.org/10.1023/A:1026370729205.

    Article  CAS  Google Scholar 

  4. Mills A, le Hunte S. An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem. 1997;108:1–35. https://doi.org/10.1016/S1010-6030(97)00118-4.

    Article  CAS  Google Scholar 

  5. Sudireddy BR, Blennow P, Nielsen KA. Microstructural and electrical characterization of Nb-doped SrTiO3–YSZ composites for solid oxide cell electrodes. Solid State Ion. 2012;216:44–9. https://doi.org/10.1016/j.ssi.2011.11.025.

    Article  CAS  Google Scholar 

  6. Okuda T, Nakanishi K, Miyasaka S, Tokura Y. Large thermoelectric response of metallic perovskites: Sr1xLaxTiO3 (0<~x<~0.1). Phys Rev B. 2001;63:113. https://doi.org/10.1103/PhysRevB.63.113104.

    Article  CAS  Google Scholar 

  7. Savaniu CD, Irvine JTS. La-doped SrTiO3 as anode material for IT-SOFC. Solid State Ion. 2011;192:491–3. https://doi.org/10.1016/j.ssi.2010.02.010.

    Article  CAS  Google Scholar 

  8. Ohta S, Nomura T, Ohta H, Koumoto K. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J App Phys. 2005;97:0341061–4. https://doi.org/10.1063/1.1847723.

    Article  CAS  Google Scholar 

  9. Li X, Zhao H, Shen W, Gao F, Huang X, Li Y, et al. Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs. J Power Sour. 2007;166:47–52. https://doi.org/10.1016/j.jpowsour.2007.01.008.

    Article  CAS  Google Scholar 

  10. Drożdż E, Łącz A, Koleżyński A, Mikuła A, Mars K. Experimental and theoretical studies of structural and electrical properties of highly porous Sr1xYxTiO3. Solid State Ion. 2017;302:173–9. https://doi.org/10.1016/j.ssi.2016.11.014.

    Article  CAS  Google Scholar 

  11. Blennow P, Hagen A, Hansen KK, Wallenberg LR, Mogensen M. Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ion. 2008;179:2047–58. https://doi.org/10.1016/j.ssi.2008.06.023.

    Article  CAS  Google Scholar 

  12. Blennow P, Hansen KK, Wallenberg LR, Mogensen M. Electrochemical characterization and redox behavior of Nb-doped SrTiO3. Solid State Ion. 2009;180:63–70. https://doi.org/10.1016/j.ssi.2008.10.011.

    Article  CAS  Google Scholar 

  13. Drożdż E, Koleżyński A. The structure, electrical properties and chemical stability of porous Nb-doped SrTiO3—experimental and theoretical studies. RSC Adv. 2017;7:28898–908. https://doi.org/10.1039/C7RA04205A.

    Article  Google Scholar 

  14. Muralidharan M, Anbarasu V, Elaya Perumal A, Sivakumar K. Carrier mediated ferromagnetism in Cr doped SrTiO3 compounds. J Mater Sci Mater Electron. 2015;26:6352–65. https://doi.org/10.1007/s10854-015-3223-9.

    Article  CAS  Google Scholar 

  15. Wang W, Ye J, Kako T, Kimura T. Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. J Phys Chem B. 2006;110:15824–30. https://doi.org/10.1021/jp062487p.

    Article  CAS  PubMed  Google Scholar 

  16. Mizera A, Łącz A, Drożdż E. Synthesis and properties of the materials in Ni/SrTi1xCrxO3 system. Ceram Int. 2019;45:21235–41. https://doi.org/10.1016/j.ceramint.2019.07.105.

    Article  CAS  Google Scholar 

  17. Łącz A, Łańcucki Ł, Lach R, Kamecki B, Drożdż E. Structural and electrical properties of Cr-doped SrTiO3 porous materials. Int J Hydrog Energy. 2018;43:8999–9005. https://doi.org/10.1016/j.ijhydene.2018.03.180.

    Article  CAS  Google Scholar 

  18. Rout SK, Panigrahi S, Bera J. Study on electrical properties of Ni-doped SrTiO3 ceramics using impedance spectroscopy. Bull Mater Sci. 2005;28:275–9. https://doi.org/10.1007/BF02711260.

    Article  CAS  Google Scholar 

  19. Mizera A, Drożdż E. Studies on structural, redox and electrical properties of Ni-doped strontium titanate materials. Ceram Int. 2020;46:24635–41. https://doi.org/10.1016/j.ceramint.2020.06.252.

    Article  CAS  Google Scholar 

  20. Sluchinskaya IA, Lebedev AI, Erko A. Structural position and oxidation state of nickel in SrTiO3. J Adv Dielectr. 2013;3:1350031-1-1350031–7. https://doi.org/10.1142/S2010135X13500318.

    Article  CAS  Google Scholar 

  21. Khalid NR, Ahmed E, Hong Z, Ahmad M, Zhang Y, Khalid S. Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceram Int. 2013;39:7107–13. https://doi.org/10.1016/j.ceramint.2013.02.051.

    Article  CAS  Google Scholar 

  22. Araña J, Doña-Rodríguez JM, González-Díaz O, Tello Rendón E, Herrera Melián JA, Colón G, et al. Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu. J Mol Catal A Chem. 2004;215:153–60. https://doi.org/10.1016/j.molcata.2004.01.020.

    Article  CAS  Google Scholar 

  23. Xin B, Wang P, Ding D, Liu J, Ren Z, Fu H. Effect of surface species on Cu-TiO2 photocatalytic activity. Appl Surf Sci. 2008;254:2569–74. https://doi.org/10.1016/j.apsusc.2007.09.002.

    Article  CAS  Google Scholar 

  24. Tseng IH, Chang WC, Wu JCS. Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B: Environ. 2002;37:37–48. https://doi.org/10.1016/S0926-3373(01)00322-8.

    Article  CAS  Google Scholar 

  25. Rahman QI, Ahmad M, Misra SK, Lohani M. Efficient degradation of methylene blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light. Int J Nanosci Nanotechnol. 2012;12:7181–6. https://doi.org/10.1166/jnn.2012.6494.

    Article  CAS  Google Scholar 

  26. Kim DH, Dionne GF, Ross CA. Structure and magnetism of epitaxial SrTi0.78Cu0.22O3−δ films with mixed-valence Cu ions. J Appl Phys. 2013;114(114):113902-1-113902–9. https://doi.org/10.1063/1.4821022.

    Article  CAS  Google Scholar 

  27. Carlotto S, Vittadini A, Casarin M. DFT modelling of the CO-NO redox reaction at Cu-doped SrTiO3(1 0 0) stepped surface: CO oxidation at lattice O ions. Inorg Chim Acta. 2020;511:119810-1-119810–6. https://doi.org/10.1016/j.ica.2020.119810.

    Article  CAS  Google Scholar 

  28. Ayala A, Holesinger TG, Clem PG, Matias V, Jia QX, Wang H, et al. Synthesis and characterization of Cu-doped SrTiO3 powders and sol-gel processed buffer layers on IBAD MgO templates. IEEE Trans Appl Supercond. 2005;15:2703–6. https://doi.org/10.1109/TASC.2005.847787.

    Article  CAS  Google Scholar 

  29. Li B, Hong J, Ai Y, Hu Y, Shen Z, Li S, et al. Visible-near-infrared-light-driven selective oxidation of alcohols over nanostructured Cu doped SrTiO3 in water under mild condition. J Catal. 2021;399:142–9. https://doi.org/10.1016/j.jcat.2021.05.008.

    Article  CAS  Google Scholar 

  30. Glisenti A, Natile MM, Carlotto S, Vittadini A. Co- and Cu-doped titanates: toward a new generation of catalytic converters. Catal Lett. 2014;144:1466–71. https://doi.org/10.1007/s10562-014-1294-5.

    Article  CAS  Google Scholar 

  31. Carlotto S, Natile MM, Glisenti A, Vittadini A. Catalytic mechanisms of NO reduction in a CO–NO atmosphere at Co- and Cu-doped SrTiO3(100) surfaces. J Phys Chem C. 2017;122:449–54. https://doi.org/10.1021/acs.jpcc.7b09279.

    Article  CAS  Google Scholar 

  32. Shannon RD. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. 1976;A32:751–67.

    Article  CAS  Google Scholar 

  33. Rodriguez JA, Kim JY, Hanson JC, Pérez M, Frenkel AI. Reduction of CuO in H2: in situ time-resolved XRD studies. Catal Lett. 2003;85:247–54. https://doi.org/10.1023/A:1022110200942.

    Article  CAS  Google Scholar 

  34. López-Suárez FE, Parres-Esclapez S, Bueno-López A, Illán-Gómez MJ, Ura B, Trawczynski J. Role of surface and lattice copper species in copper-containing (Mg/Sr)TiO3 perovskite catalysts for soot combustion. Appl Catal B. 2009;93:82–9. https://doi.org/10.1016/j.apcatb.2009.09.015.

    Article  CAS  Google Scholar 

  35. Li J, Mayer JW. Oxidation and reduction of copper oxide thin films. Mater Chem Phys. 1992;32:1–24. https://doi.org/10.1063/1.347417.

    Article  CAS  Google Scholar 

  36. Linnera J, Sansone G, Maschio L, Karttunen AJ. Thermoelectric properties of p-type Cu2O, CuO, and NiO from hybrid density functional theory. J Phys Chem C. 2018;122:15180–9. https://doi.org/10.1021/acs.jpcc.8b04281.

    Article  CAS  Google Scholar 

  37. McColm TD, Irvine JTS. B site doped strontium titanate as a potential SOFC substrate. Ionics. 2001;7:116–21. https://doi.org/10.1007/BF02375477.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The publication is financed from the Subsidy No. 16.16.160.557 of the Polish Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Contributions

PG—synthesis of materials, writing and co-editing of the manuscript. AŁ—carrying out the tests of electrical properties, preparation of test DC results and interpretation, writing and co-editing of the manuscript. AM—participation in the synthesis of materials, preparation of the results of diffractometric measurements, performing the Rietveld analysis. ED—concept of research and publication, execution of TPR research and their interpretation, writing and co-editing of the manuscript.

Corresponding author

Correspondence to Ewa Drożdż.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwóźdź, P., Łącz, A., Mizera, A. et al. Some aspects of Cu incorporation into SrTiO3 structure. J Therm Anal Calorim 147, 9949–9958 (2022). https://doi.org/10.1007/s10973-022-11306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11306-7

Keywords

Navigation