Skip to main content
Log in

Calorimetric study of the thermodynamics of iron (III) complexation with nicotinic acid in aqueous ethanol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The changes in enthalpy of Fe(III) complex formation with nicotinic acid (ΔrH), the dissolution enthalpies of nicotinic acid in aqueous ethanol (mole fraction of the organic component varied in the range 0 < XEtOH < 0.7 mol fractions) were determined by calorimetry at the temperature 298.15 ± 0.01 K and I = 0.25 mol∙L−1 (NaClO4). The changes in enthalpy of transfer of nicotinic acid in a mixed solvent ΔtrH0(HNic) were calculated. An increase in the value of ΔtrH0(HNic) was observed. The changes in the enthalpy of transfer of the complexation reaction from water to a mixed solvent ΔtrH 0r are calculated. The significant increase in the exothermicity of the reaction is observed when a small amount of ethanol is added to water. With a further increase in the concentration of ethanol in the solution, a decrease in the heat effect is observed up to the transition to the endothermic region at XEtOH of more than 0.5 mol. fr. The experimental data are considered using an approach based on the thermodynamic characteristics of the solvation of each participant in the processes under study.The analysis of the contributions of reactants enthalpy of reaction into formation [FeHNic]3+ showed that the change in enthalpy of the reaction, when changing the solvent composition, is caused by the changes in solvation state of nicotinic acid at XEtOH from 0 to 0.1 mol. fr. and desolvation of the reaction product in more concentrated solutions (XEtOH > 0.1 mol. fr.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Takanaga H, Maeda H, Yabuuchi H, Tamai I, Higashida H, Tsuji A. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane. J Pharm Pharmacol. 1996;48:1073–7.

    Article  CAS  Google Scholar 

  2. Danilenko LM, Pokrovskii MV, Kesarev OG, Timokhina AS, Sernov LN. Derivatives of 5-hydroxynicotinic acid: New compounds with cardioprotective action. Asian J Pharm. 2017;11(3):S640–6.

    CAS  Google Scholar 

  3. Karpe F, Frayn FKN. The nicotinic acid receptor – a new mechanism for an old drug. Lancet. 2004;363:1892–4.

    Article  CAS  Google Scholar 

  4. Ganji SH, Tavintharan S, Zhu D, Xing Y, Kamanna VS, Kashyap ML. Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J Lipid Res. 2004;45:1835–45.

    Article  CAS  Google Scholar 

  5. Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Krˇcmová LK, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Mát’uš M, Mladˇenka P,. Biological properties of vitamins of the B-Complex, part 1: vitamins B1, B2, B3, and B5. Nutrients. 2022;14:484.

    Article  Google Scholar 

  6. Abdel-Mohsen MA, Abdel Malak CA, Abou Yossef MA, El-Shafey ES. Antitumor activity of copper (I)-Nicotinate complex and autophagy modulation in HCC1806 breast cancer cells. Anticancer Agents Med Chem. 2017;17(11):1526–36.

    Article  CAS  Google Scholar 

  7. Nawaz M, Abbasi MW, Hisaindee S, Zaki MJ, Abbas HF, Mengting H, Ahmed MA. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes. Spectrochimica Acta Part A Mol Biomol Spectroscopy. 2016;161:39–43.

    Article  CAS  Google Scholar 

  8. Al-Saif FA, Refat MS. Ten metal complexes of vitamin B3/niacin: Spectroscopic, thermal, antibacterial, antifungal, cytotoxicity and antitumor studies of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Au(III) complexes. J Mol Struct. 2012;1021:40–52.

    Article  CAS  Google Scholar 

  9. Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115–30.

    Article  CAS  Google Scholar 

  10. Bagheri AGh. Thermodynamic studies of metal complexes of tetracycline and their application in drug analysis. Pharm Chem J. 2014;48(7):483–7.

    Article  Google Scholar 

  11. Belous AM, Konnik KT. The physiological role of iron. Kiev: Nauk. Dumka; 1991. (in Russian).

  12. Abi-Khalil E, Segond D, Terpstra T, Andre-Leroux G. Kallassy M. Lereclus D. Bou-Abdallah F, Nielsen-Leroux C. Heme interplay between IlsA and IsdC: two structurally different surface proteins from Bacillus cereus. Biochimica et Biophysica Acta. 2015;1850(9):1930-41.

  13. Sharnin VA, Usacheva TR, Kuzmina IA, Gamov GA, Alexandriyskiy VV. Complex Formation in non-aqueous media: a solvation approach to describing the role of a solvent. Moscow: LENARD; 2019. ((in Russian)).

    Google Scholar 

  14. Reichardt C. Solvents and solvent effects in organic chemistry. Cop: VCH; 1988.

    Google Scholar 

  15. Krestov GA, Afanas’ev VN, Agafonov AV. Complex formation in non-aqueous media. Moscow: Nauka; 1989. ((in Russian)).

    Google Scholar 

  16. Pal’chevskij VV, Horunzhij VV, Shcherbakova VI. Thermodynamic characteristics of complex compounds of bivalent and trivalent iron, including anions of some pyridine carboxylic acids. Russ J Coord Chem. 1984;10(8):1076–8.

    Google Scholar 

  17. Gama S, Frontauria M, Ueberschaar N, Brancato G, Milea D, Sammartano S, Plass W. Thermodynamic study on 8-hydroxyquinoline-2-carboxylic acid as a chelating agent for iron found in the gut of Noctuid larvae. New J Chem. 2018;42:8062–73.

    Article  CAS  Google Scholar 

  18. Grazhdan KV, Dushina SV, Sharnin VA. The thermochemical characteristics of nicotinamide coordination by iron(iii) and ligand protonation in aqueous-ethanolic mixtures. Russ J Phys Chem A. 2009;83(10):1734–6.

    Article  CAS  Google Scholar 

  19. Grazhdan KB, Dushina SV, Sharnin VA, Ekimovskaya AA, Aralkina NV. Enthalpies of Iron(III) perchlorate and Fe3+ ion transfer from water into aqueous ethanol solvents. Russ J Phys Chem A. 2013;87(11):1821–4.

    Article  CAS  Google Scholar 

  20. Tyunina EYu, Mezhevoi IN, Stavnova AA. Molecular complexes of polar basic amino acids (L-lysine, L-histidine) with nicotinic acid in water and buffer solution: a thermodynamic aspects. J Chem Thermodyn. 2021:106552.

  21. Karyakin YuV, Angelov II. Pure chemical substances. Moscow: Khimiya; 1974. (in Russian).

  22. Schumacher JC. Perchlorates. Their properties, manufacture and uses. New York: Reinhold Publishing Corporation; 1963.

  23. Vasiliev VP, Morozova RP, Kochergina LA. Praktikum po analiticheskoy khimii. Moscow: Khimiya; 2000.

    Google Scholar 

  24. Perelygin IS, Kimtis LL, Chizhik VI, et al. Experimental Methods of Solution Chemistry: Spectroscopy and Calorimetry. Moscow: Nauka; 1995.

  25. Kilday MV, Marthada V. The enthalpy of Solution of SRM 1655 (KCl) in H2O. J Research NBS. 1980;85(6):467–81.

    CAS  Google Scholar 

  26. Vanderzee CE, Swanson JA. Heats of delution and relative apparent molar enthalpies of aqueous sodium perchlorate and perchloric acid. J Phys Chem. 1963;67(2):285–91.

    Article  CAS  Google Scholar 

  27. Meshkov AN, Gamov GA. KEV: a free software for calculating the equilibrium composition and determining the equilibrium constants using UV–Vis and potentiometric data. Talanta. 2019;198:200–5.

    Article  CAS  Google Scholar 

  28. Kuranova NN, Dushina SV, Sharnin VA. Solvent effect of aqueous ethanol on complex formation and protolytic equilibria in nicotinic acid solutions. Russ J Inorg Chem. 2008;53(12):1943–7.

    Article  Google Scholar 

  29. Kuranova NN, Dushina SV, Sharnin VA. Thermodynamics of protolytic equilibrium of nicotinic acid in water-ethanol solutions. Russ J Phys Chem A. 2010;84(5):792–5.

    Article  CAS  Google Scholar 

  30. Kurysheva AS, Sharnin VA, Ledenkov SF. The enthalpies of solution of nicotinamide in aqueous solutions of ethanol and dimethylsulfoxide. Russ J Phys Chem A. 2004;78(2):166–70.

    Google Scholar 

  31. Gamov GA, Kuranova NN, Pogonin AE, Aleksandriiskii VV, Sharnin VA. Hydrogen bonds determine the signal arrangement in 13C NMR spectra of nicotinate. J Mol Struct. 2018;1154:565–9.

    Article  CAS  Google Scholar 

  32. Krestov GA. Ionic solvation, Ellis Horwood Ed., New York-London-Toronto-Sydney-Tokyo-Singapore, 1994.

Download references

Acknowledgements

The study was carried out using the resources of the Center for Shared Use of Scientific Equipment of the ISUCT (with the support of the Ministry of Science and Higher Education of Russia, grant No. 075-15-2021-671) with the financial support of the Ministry of Science and Higher Education of the Russian Federation (project FZZW-2020-0009)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia N. Kuranova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuranova, N.N., Sharnin, V.A. Calorimetric study of the thermodynamics of iron (III) complexation with nicotinic acid in aqueous ethanol. J Therm Anal Calorim 147, 5519–5524 (2022). https://doi.org/10.1007/s10973-022-11300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11300-z

Keywords

Navigation