Skip to main content
Log in

Effect of char-forming agents rich in tertiary carbon on flame retardant properties of polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, a novel type of triazine-based char-forming agent (PTPA) was synthesized and combined with ammonium polyphosphate (APP) to form an intumescent flame retardant (IFR) system to prevent polypropylene (PP) burning. A commercialized char-forming agent was purchased and the same process was used to study its flame retardant performance on polypropylene, and the results were compared with those of this experiment. It was found that the PP/IFR samples in this experiment (APP/PTPA = 4/1–1/1) reached the increased limiting oxygen index (LOI) value of 29.5%, and passed the vertical combustion (UL-94) V-0 rating. The maximum LOI for the purchase of char-forming agent is 31.0%. Thermogravimetric analysis results show that the PTPA/APP system can improve the thermal stability and thermal oxidation stability of carbon slag. The carbon residue was further studied by visual observation and scanning electron microscopy. The dense coke residues formed hinder the transfer of gas and heat during the combustion process, and ultimately endow the PP/IFR system with higher flame retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

All data and materials are available.

Code availability

Not applicable.

References

  1. Liang N, Yang Z, Liu X. Experimental study of flexural toughness for multi-scale polypropylene fiber reinforced concrete. J Cent South Univ. 2017;48:2783–9.

    Google Scholar 

  2. Zheng Z, Xia Y, Liao C, Chai W. Facile fabrication of cyclodextrin-based and integrated flame retardant in intumescent flame-retarding polypropylene. J Therm Anal Calorim. 2021;146(6):375–2386.

    Article  Google Scholar 

  3. Zhang YF, Lin XF, Hu H. Combined effect of chemically compound graphene oxide-calcium pimelate on crystallization behavior, morphology and mechanical properties of isotactic polypropylene. Polym Adv Technol. 2020;31(9):2301–11.

    CAS  Google Scholar 

  4. Zhang YF, Mao JJ, Zhou PZ. The relation between chemical structure of dicarboxylic dihydrazide compounds and nucleation effect in isotactic polypropylene. J Therm Anal Calorim. 2021;145(5):2379–87.

    CAS  Google Scholar 

  5. Xu S, Zhang M, Li SY, Zeng HY, Du JZ, Chen CR, Wu K, Tian XY, Pan Y. The effect of ammonium polyphosphate on the mechanism of phosphorous-containing hydrotalcite synergism of flame retardation of polypropylene. Appl Clay Sci. 2020;185:105348.

    CAS  Google Scholar 

  6. Hajibeygi M, Mousavi M, Shabanian M, Vahabi H. The effect of phosphorus based melamine-terephthaldehyde resin and Mg-Al layered double hydroxide on the thermal stability, flame retardancy and mechanical properties of polypropylene MgO composites. Mater Today Commun. 2020;23:100880.

    CAS  Google Scholar 

  7. Himma NF, Anisah S, Prasetya N, Wenten IG. Advances in preparation, modification, and application of polypropylene membrane. J Polym Eng. 2016;36:329–62.

    Google Scholar 

  8. Nawadon P, Phisut N, Jakkid S. Transformation of β to α phase of isotactic polypropylene nucleated with nano styrene butadiene rubber-based β-nucleating agent under microwave irradiation. J Cent South Univ. 2018;25:3098–106.

    Google Scholar 

  9. Sun Y, Yuan B, Shang S, Zhang H, Shi Y, Yu B, Qi C, Dong H, Chen X, Yang X. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Compos Part B Eng. 2020;181:107588.

    CAS  Google Scholar 

  10. Rashid Nazir SG. Recent developments in P(O-S)-N containing flame retardants. J Appl Polym Sci. 2020;137:47910.

    Google Scholar 

  11. Zhao W, Kumar Kundu C, Li Z, Li X, Zhang Z. Flame retardant treatments for polypropylene: strategies and recent advances. Compos Part A Appl S. 2021;145:106382.

    CAS  Google Scholar 

  12. Yue J, Liu C, Zhou C, Fu X, Luo L, Gan L, Yang X, Huang J. Enhancing flame retardancy and promoting initial combustion carbonization via incorporating electrostatically surface-functionalized carbon nanotube synergist into intumescent flame-retardant poly(butylene succinate). Polymer. 2020;189:122197.

    CAS  Google Scholar 

  13. Ou H, Xu J, Liu B, Xue H, Weng Y, Jiang J, Xu G. Study on synergistic expansion and flame retardancy of modified kaolin to low density polyethylene. Polymer. 2021;221:123586.

    CAS  Google Scholar 

  14. Yu S, Xiao S, Zhao Z, Huo X, Wei J. Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene. Chin J Chem Eng. 2019;27:1735–43.

    CAS  Google Scholar 

  15. Xu BR, Deng C, Li YM, Lu P, Zhao PP, Wang YZ. Novel amino glycerin decorated ammonium polyphosphate for the highly-efficient intumescent flame retardance of wood flour/polypropylene composite via simultaneous interfacial and bulk charring. Compos Part B: Eng. 2019;172:636–48.

    CAS  Google Scholar 

  16. Ran G, Liu X, Guo J, Sun J, Li H, Gu X, Zhang S. Improving the flame retardancy and water resistance of polylactic acid by introducing polyborosiloxane microencapsulated ammonium polyphosphate. Compos Part B Eng. 2019;173:106772.

    Google Scholar 

  17. Zhu J, Lu X, Yang H, Xin Z. Vinyl polysiloxane microencapsulated ammonium polyphosphate and its application in flame retardant polypropylene. J Polym Res. 2018;25:107.

    Google Scholar 

  18. Zhang S, Ji W, Han Y, Gu X, Li H, Sun J. Flame-retardant expandable polystyrene foams coated with ethanediol-modified melamine-formaldehyde resin and microencapsulated ammonium polyphosphate. J Appl Polym Sci. 2018;135:46471.

    Google Scholar 

  19. Yan H, Zhao Z, Ge W, Zhang N, Jin Q. Hyperbranched polyurea as charring agent for simultaneously improving flame retardancy and mechanical properties of ammonium polyphosphate/polypropylene composites. Ind Eng Chem Res. 2017;56(30):8408–15.

    CAS  Google Scholar 

  20. Liu Y, Gao Y, Zhang Z, Wang Q. Preparation of ammonium polyphosphate and dye co-intercalated LDH/polypropylene composites with enhanced flame retardant and UV resistance properties. Chemosphere. 2021;277:130370.

    CAS  PubMed  Google Scholar 

  21. Xu J, Ou H, Shan X, Liu B, Jiang J, Xu G. Investigation of novel intumescent flame retardant low-density polyethylene based on SiO2@MAPP and double pentaerythritol. J Appl Polym Sci. 2020;137:e49242.

    Google Scholar 

  22. Yu G, Ma C, Li J. Flame retardant effect of cytosine pyrophosphate and pentaerythritol on polypropylene. Compos Part B Eng. 2020;180:107520.

    CAS  Google Scholar 

  23. Lai X, Zeng X, Li H, Liao F, Yin C, Zhang H. Synergistic effect between a triazine-based macromolecule and melamine pyrophosphate in flame retardant polypropylene. Polym Compos. 2012;33:35–43.

    CAS  Google Scholar 

  24. Li WX, Zhang HJ, Hu XP, Yang WX, Cheng Z, Xie CQ. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets. J Hazard Mater. 2020;398:123001.

    CAS  PubMed  Google Scholar 

  25. Wang B, Li J, Lai X, Li H, Chen Y, Zeng X. Synthesis of a novel N-alkoxyamine containing macromolecular intumescent flame retardant and its synergism in flame-retarding polypropylene. Polym Adv Technol. 2021;32:2452–64.

    CAS  Google Scholar 

  26. Zhang Y, Yang W. Synthesis and characterization of PEDMCD as a flame retardant and its application in epoxy resins. RSC Adv. 2021;11:2756–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu C, He M, Liu Y, Cui J, Tai Q, Song L, Hu Y. Synthesis and application of a mono-component intumescent flame retardant for polypropylene. Polym Degrad Stab. 2018;151:144–51.

    CAS  Google Scholar 

  28. Song Y, Zong X, Shan X, Zhang X, Zou G, Zhao C, Li J. Synergistic effect of fly ash on hydroxymethylated lignin-containing flame retardant polypropylene: flame retardancy and thermal stability. Polym Adv Technol. 2020;32:1075–85.

    Google Scholar 

  29. Zhang T, Tao Y, Zhou F, Sheng H, Qiu S, Ma C, Hu Y. Synthesis of a hyperbranched phosphorus-containing polyurethane as char forming agent combined with ammonium polyphosphate for reducing fire hazard of polypropylene. Polym Degrad Stab. 2019;165:207–19.

    CAS  Google Scholar 

  30. Wang J, Guo Y, Zhao S, Huang RY, Kong XJ. A novel intumescent flame retardant imparts high flame retardancy to epoxy resin. Polym Adv Technol. 2019;31:932–40.

    Google Scholar 

  31. Tang W, Qian L, Chen Y, Qiu Y, Xu B. Intumescent flame retardant behavior of charring agents with different aggregation of piperazine/triazine groups in polypropylene. Polym Degrad Stab. 2019;169:108982.

    Google Scholar 

  32. Dong H, Yuan B, Qi C, Li K, Shang S, Sun Y, Chen G, Zhang H, Chen X. Preparation of piperazine cyanurate by hydrogen-bonding self-assembly reaction and its application in intumescent flame-retardant polypropylene composites. Polym Adv Technol. 2019;31:1027–37.

    Google Scholar 

  33. Liu L, Qian M, Song PA, Huang G, Yu Y, Fu S. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain Chem Eng. 2016;4:2422–31.

    CAS  Google Scholar 

  34. Wu K, Xu S, Tian XY, Zeng HY, Hu J, Guo YH, Jian J. Renewable lignin-based surfactant modified layered double hydroxide and its application in polypropylene as flame retardant and smoke suppression. Int J Biol Macromol. 2021;178:580–90.

    CAS  PubMed  Google Scholar 

  35. Dong X, Yang J, Hua X, Nie S, Kong F. Synthesis of a novel char-forming agent (PEIC): Improvement in flame retardancy, thermal stability, and smoke suppression for intumescent flame-retardant polypropylene composites. J Appl Polym Sci. 2020;137:48296.

    CAS  Google Scholar 

  36. Chen L, Yuan Y, Wang B, Liu N, Xing Y, Li Y. Synthesis and application of novel triazine-based charring-foaming agents in intumescent flame retardant polypropylene. Trans Tianjin Univ. 2017;23:221–9.

    CAS  Google Scholar 

  37. Ma D, Li J. Synthesis of a bio-based triazine derivative and its effects on flame retardancy of polypropylene composites. J Appl Polym Sci. 2020;137:47367.

    Google Scholar 

  38. Xu ZZ, Huang JQ, Chen MJ, Tan Y, Wang YZ. Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polym Degrad Stab. 2013;98:2011–20.

    CAS  Google Scholar 

  39. Dai J, Li B. Synthesis, thermal degradation, and flame retardance of novel triazine ring-containing macromolecules for intumescent flame retardant polypropylene. J Appl Polym Sci. 2010;116:2157–65.

    CAS  Google Scholar 

  40. Xie H, Lai X, Li H, Zeng X. Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene. Polym Degrad Stab. 2016;130:68–77.

    CAS  Google Scholar 

  41. Lai X, Tang S, Li H, Zeng X. Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene. Polym Degrad Stab. 2015;113:22–31.

    CAS  Google Scholar 

  42. Su X, Yi Y, Tao J, Qi H, Li D. Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym Degrad Stab. 2014;105:12–20.

    CAS  Google Scholar 

  43. Wen P, Wang X, Xing W, Feng X, Yu B, Shi Y, Tang G, Song L, Hu Y, Yuen RK. Synthesis of a novel triazine-based hyperbranched char foaming agent and the study of Its enhancement on flame retardancy and thermal stability of polypropylene. Ind Eng Chem Res. 2013;52:17015–22.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to National Natural Science Foundation of China (No. 21376031) and Hunan Provincial Natural Science Foundation of China (No. 2019JJ40294) for financial support.

Funding

This work was funded by National Natural Science Foundation of China (No. 21376031) and Hunan Provincial Natural Science Foundation of China (No. 2019JJ40294).

Author information

Authors and Affiliations

Authors

Contributions

Xiao-Shuang Tian: implementation of experimental and manuscript preparation; Yue-Fei Zhang: methodology, resources, writing—review & editing, supervision, funding acquisition; Yan Li: writing—review & editing, assistance for supervision; Jin-Rong Zhong: investigation, data processing, drawing.

Corresponding author

Correspondence to Yue-Fei Zhang.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist.

Consent to participate

All authors consent to participate in this work.

Consent for publication

All authors consent for publication of this manuscript.

Ethics approval

Not applicable.

Humans and animals rights

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, XS., Zhang, YF., Li, Y. et al. Effect of char-forming agents rich in tertiary carbon on flame retardant properties of polypropylene. J Therm Anal Calorim 147, 10391–10401 (2022). https://doi.org/10.1007/s10973-022-11299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11299-3

Keywords

Navigation