Skip to main content
Log in

Green synthesis of a Schiff base ligand and its Co(II), Cu(II) and Zn(II) complexes: thermoanalytical and spectroscopic studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Schiff bases are organic compounds that present a broad biological activity, which can be improved by the coordination with different metal ions. Their complexes can also act as corrosion inhibitor agents or even as heterogeneous catalysts in organic reactions. Based on the Schiff base synthesis versatility, and its several potential applications, this work focused on the obtention of a Schiff base derived from 4-aminosalicylic acid and salicylaldehyde by the mechanochemical method, and its Co(II), Cu(II), and Zn(II) complexes by precipitation in an aqueous solution. Using eco-friendly methods, it was not necessary to employ organic solvents or heating in the syntheses. Spectroscopic techniques were used to characterize the structure of the Schiff base and its coordination compounds, among them, MS, FTIR, UV/VIS/NIR, thermoanalytical techniques (TG-DSC, DSC, and EGA), and X-ray powder diffraction. The spectroscopic and thermal results confirmed Schiff base formation, and by the thermoanalytical study, it was possible to evaluate its thermal behavior and propose a thermal degradation mechanism, which results in the formation of a decarboxylation, resulting in the 3-aminophenol, a common thermal product of 4-aminosalicylic acid. For the metal complexes, the analytical and thermoanalytical results showed that they present a 1:1 metal–ligand stoichiometry, while FTIR and UV–VIS/NIR spectra demonstrated that the ligand coordinated with the metals in different ways through the carboxylate group and the phenolic oxygen. Furthermore, the EGA results showed that during the metal complexes decomposition, salicylaldehyde releasing is common for Co(II) and Zn(II) complexes, which is resulted from the C–N bond break.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kajal A, Bala S, Kamboj S, Sharma N, Saini V. Schiff bases: a versatile pharmacophore. J Catal. 2013;2013:1–15.

    Article  CAS  Google Scholar 

  2. Cleiton M, Daniel L, Modolo LV, Alves RB, De Resende MA, Martins CVB. A short review of their antimicrobial activities. J Adv Res. 2011;2:1–8.

    Article  Google Scholar 

  3. Jia Y, Li J. Molecular assembly of Schiff base interactions: construction and application. Chem Rev. 2015;3:1597–621.

    Article  CAS  Google Scholar 

  4. Divya K, Pinto GM, Pinto AF. Application of metal complexes of Schiff bases as an antimicrobial drug: a review of recent works. Int J Curr Pharm Res. 2017;9:27–30.

    Article  CAS  Google Scholar 

  5. Abu-dief AM, Mohamed IMA. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci. 2015;4:119–33.

    PubMed  PubMed Central  Google Scholar 

  6. Ikram M, Rehman S, Baker RJ, Ur H, Khan A, Iqbal M. Synthesis and distinct urease enzyme inhibitory activities of metal complexes of Schiff-base ligands: kinetic and thermodynamic parameters evaluation from TG-DTA analysis. Thermochim Acta. 2013;555:72–80.

    Article  CAS  Google Scholar 

  7. Ghosh P, Dey SK, Ara MH, Karim K, Nazmul Islam ABM. A review on synthesis and versatile applications of some selected Schiff bases with their transition metal complexes. Egypt J Chem. 2019;62:523–47.

    Google Scholar 

  8. Xie J, Li C, Dong J, Qu W, Pan L, Peng M. The standard molar enthalpy of formation of a new copper (II) Schiff-base complex and its interaction with bovine serum albumin. Thermochim Acta. 2014;598:7–15.

    Article  CAS  Google Scholar 

  9. Boman G. Serum concentration and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid. Eur J Clin Pharmacol. 1974;3:217–25.

    Article  Google Scholar 

  10. Bhattacharya B, Haldar R, Dey R, Maji TK, Ghoshal D. Porous coordination polymers based on functionalized Schiff base linkers: enhanced CO2 uptake by pore surface modification. Dalton Trans. 2014;5:2272–82.

    Article  Google Scholar 

  11. Mirza ZA, Saleem M, Sadeeq M, Kosser F, Mirza SI. Preparation and characterization of metal complexes of Tungsten (VI) with biologically active Schiff bases. J Chem Pharm. 2014;6:706–10.

    Google Scholar 

  12. Patole J, Shingnapurkar D, Ratledge C. Schiff base conjugates of p-aminosalicylic acid as antimycobacterial agents. Med Chem Lett. 2006;16:1514–7.

    Article  CAS  Google Scholar 

  13. Belz T, Ihmaid S, Al-rawi J, Petrovski S. Antifungal activity of N-(benzyl carbamoyl or carbamothioyl)-2-hydroxy substituted benzamide and 2-benzyl amino-substituted benzoxazines. Int J Med Chem. 2013;1:1–20.

    Google Scholar 

  14. Ashraf MA, Wajid A, Mahmood K, Maah MJ, Yusoff I. Spectral investigation of the activities of amino substituted bases. Orient J Chem. 2011;27:27–31.

    Google Scholar 

  15. Anderson ABC, De Carvalho GSG, Marques LF, Correa CC, Da Silva AD, et al. The zwitterionic structure of 2-hydroxy-4-[(2-hydroxybenzylidene)amino]benzoic acid. Acta Crystallogr. 2013;69:934–6.

    Google Scholar 

  16. El-Haty MT, Adam FA, Nadia AA. Coordination of Y(lU), Ce(tII), La(IU). AN)) Zr(1V) with some salicylidene aromatic Schiff bases. J Chin Chem Soc. 1984;31:49–54.

    Article  CAS  Google Scholar 

  17. James SL, Adams CJ, Bolm C, Braga D, Collier P, Jones W. Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev. 2012;41:413–47.

    Article  CAS  PubMed  Google Scholar 

  18. De Moura A, Gaglieri C, Da Silva-Filho LC, Caires FJ. Mechanochemical synthesis, characterization and thermoanalytical study of a new curcumin derivative. J Therm Anal Calorim. 2021;146:587–94.

    Article  CAS  Google Scholar 

  19. De Moura A, Gaglieri C, Alarcon TR, Ferreira TL, Vecchi R, et al. A new curcuminoids-coumarin derivative: mechanochemical synthesis, characterization and evaluation of its in vitro cytotoxicity and antimicrobial properties. ChemistrySelect. 2021;6:11352–61.

    Article  CAS  Google Scholar 

  20. Do J-L, Friščić T. Mechanochemistry: a force of synthesis. ACS Cent Sci. 2017;3:13–7.

    Article  CAS  PubMed  Google Scholar 

  21. De Oliveira CN, Ionashiro M, Graner CAF. Titulação complexométrica de zinco cobre e cobalto. Eclética Quím. 1985;10:7–10.

    Article  Google Scholar 

  22. Silverstein RM, Webster FX. Spectrometric identification of organic compounds. 7th ed. Hoboken: Wiley; 2005.

    Google Scholar 

  23. Wani AB, Singh J, Upadhyay N. Synthesis and characterization of transition metal complexes of para-aminosalicylic acid with evaluation of their antioxidant activities. Orient J Chem. 2017;30:1120–6.

    Article  CAS  Google Scholar 

  24. Rotich MK, Glass BD, Brown ME. Thermal studies on some substituted aminobenzoic acids. J Therm Anal. 2001;64:681–8.

    Article  CAS  Google Scholar 

  25. Parmar B, Kumar K, Maiti P, Paul P. Syntheses, characterization and crystal structures of potassium and barium complexes of a Schiff base ligand with different anions. J Chem Sci. 2014;126:1373–84.

    Article  CAS  Google Scholar 

  26. Dippong T, Stoia M. Study on the obtaining of cobalt oxides by thermal decomposition of some complex combinations, undispersed and dispersed in SiO2 matrix. J Therm Anal Calorim. 2008;94:389–93.

    Article  CAS  Google Scholar 

  27. Iwase K, Nagano Y, Yoshikawa I, Houjou H, Yamamura Y, Saito K. Cold crystallization in Schiff-base nickel (II) complexes derived from three toluidine isomers. J Phys Chem. 2014;118:27664–71.

    CAS  Google Scholar 

  28. De Roo J, Baquero EA, Coppel Y, De Keukeleere K. Insights into the ligand shell, coordination mode, and reactivity of carboxylic acid capped metal oxide nanocrystals. Chem Plus Chem. 2016;81:1–9.

    Google Scholar 

  29. Cortijo M, Herrero S, Jimenez-Aparicio R, Perles J, Priego JL, Torralvo MJ, Torroba J. Hybrid polyfunctional systems based on nickel (II) isonicotinate. Eur J Inorg Chem. 2013;14:2580–90.

    Article  CAS  Google Scholar 

  30. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. 6th ed. Hoboken: Wiley; 2009.

    Google Scholar 

  31. Panicker CY, Varghese HT, John A, Philip D, Istvan K, Keresztury G. FT-IR, FT-Raman and FT-SERS spectra of 4-aminosalicylic acid sodium salt dihydrate. Spectrochim Acta A Mol Biomol Spectrosc. 2002;58:281–7.

    Article  PubMed  Google Scholar 

  32. Wang YA, Liu T, Zhong GQ. Synthesis, characterization and applications of copper(II) complexes with Schiff bases derived from chitooligosaccharide and iodosubstituted salicylaldehyde. Carbohydr Polym. 2019;224:115151–1151158.

    Article  CAS  PubMed  Google Scholar 

  33. Tian Y, Allan P, He X, McPherson LJM. Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer. Dalton Trans. 2013;4:3–7.

    Google Scholar 

  34. Pretsch T, Chapman KW, Halder GJ, Kepert CJ. Dehydration of the nanoporous coordination framework Er III [Co III (CN) 6] 4 (H2O): single crystal to single crystal transformation and negative thermal expansion in Er III [Co III (CN) 6]. Chem Comm. 2006;4:1857–9.

    Article  Google Scholar 

  35. Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. 5ª. New York: Cengage Learning; 2014.

    Google Scholar 

  36. De Godoi R, Gaglieri C, Turra RA, De Moura A, De Almeida AC, Caires FJ, Ionashiro M. Cobalt selenate pentahydrate: thermal decomposition intermediates and their properties dependence on temperature changes. Thermochim Acta. 2020;689:178615–22.

    Article  CAS  Google Scholar 

  37. Ahmad F, Aly EH, Atef M, Elokr MM. Study the influence of zinc oxide addition on cobalt doped alkaline earth borate glasses. Alloys Compd. 2014;593:250–5.

    Article  CAS  Google Scholar 

  38. Farouk M, Ahmad F, Samir A. Ligand field and spectroscopic investigations of cobalt doped erbium–zinc borate glasses. Opt Quantum Electron. 2019;292:1–12.

    Google Scholar 

  39. Lever ABP. Inorganic electronic spectroscopy. New York: Elsevier; 1984.

    Google Scholar 

  40. Kawata S, Heise HM. Near-infrared spectroscopy: principles, instruments, applications. Hoboken: Wiley VHC; 2002.

    Google Scholar 

  41. Workman J, Weyer L. Practical guide to interpretive near-infrared. Boca Raton: CRC Press; 2007.

    Book  Google Scholar 

  42. Pouramini Z, Moradi A. Structural and orthoselectivity study of 2-hydroxybenzaldehyde using spectroscopic analysis. Arab J Chem. 2012;5:99–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPESP (Grant Numbers 2018/24378-6 and 2021/05926-5), CNPq (Grant Numbers 317282/2021-2 and 422893/2021-8) and to CEPID-CDMF laboratory (Grant Number 2013/07296-2) for the X ray powder diffraction.

Author information

Authors and Affiliations

Authors

Contributions

AM contributed to methodology, conceptualization, validation, formal analysis, investigation, writing—original draft; writing—review and editing; JBJ contributed to methodology, formal analysis, writing—original draft; ACSC contributed to conceptualization, formal analysis, and investigation; FJC contributed to conceptualization, funding acquisition, project administration, resources, supervision, writing—review and editing.

Corresponding author

Correspondence to Flávio Junior Caires.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2209 KB)

Supplementary file 2 (MP4 4959 kb)

Supplementary file 3 (MP4 11828 kb)

Supplementary file 4 (MP4 16420 kb)

Supplementary file 5 (MP4 16137 kb)

Supplementary file 6 (MP4 18835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura, A., Júnior, J.B., Carvalho, A.C.S. et al. Green synthesis of a Schiff base ligand and its Co(II), Cu(II) and Zn(II) complexes: thermoanalytical and spectroscopic studies. J Therm Anal Calorim 147, 11093–11106 (2022). https://doi.org/10.1007/s10973-022-11293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11293-9

Keywords

Navigation