Skip to main content
Log in

Thermo-hydraulic performance of solar air heater having winglet type roughness element

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An experimental study has been done to evaluate the thermo-hydraulic performance of solar air heater having roughness element over the absorber plate in the form of a winglet type vortex generator. LCT technique is used to measure the Nusselt number over the absorber surface for Reynolds number (Re) of 3000–22,000 and roughness parameters such as relative roughness pitch (P/e) of 5–12, angle of attack (α) ranges of 30°–75° and relative roughness width (W/w) of 3–7. The Nusselt number and friction factor with this roughness are compared with smooth surface for similar flow condition. The maximum enhancement in Nusselt number and friction factor are obtained to be 2.91 and 2.85 times that of smooth surface, respectively. The optimum values of the roughness parameters are evaluated based on the thermo-hydraulic performance parameter criterion. The optimum roughness parameters obtained as the relative roughness pitch (P/e) of 8, angle of attack (α) of 60° and relative roughness width (W/w) of 5. The maximum value of the thermo-hydraulic performance parameter (THPP) is observed to be 2.95.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A P :

Area of the collector, m2

A orifice :

Orifice plate cross-sectional area, m2

C d :

Coefficient of discharge

C p :

Specific heat of air, J kg−1 K−1

D h :

Duct hydraulic diameter, m

e :

Height of the rib, m

f :

Friction factor

H :

Duct depth, m

HIS:

Hue, saturation and intensity

h :

Heat transfer coefficient, W m−2 K−1

k :

Thermal conductivity of air, W m−1 K−1

LCT:

Liquid crystal thermography

L d :

Absorber plate length, m

m :

Mass flow rate, kg s−1

Nu:

Nusselt number

P atm :

Atmospheric pressure

Pr:

Prandtl number

P/e :

Relative roughness pitch

Q :

Heat transfer rate, W

RGB:

Red, green and blue

Re:

Reynolds number

TLC:

Thermo-chromic liquid crystal

T a :

Ambient temperature, °C

T mf :

Air mean bulk temperature, °C

T i :

Air temperature (inlet), °C

T o :

Air temperature (outlet), °C

T LC :

Surface temperature measured by TLC sheet, °C

V a :

Velocity of air, m s−1

w :

Width of rib, m

W :

Duct width, m

W/w :

Relative roughness width, m

P d :

Test section pressure drop, Pa

P o :

Pressure drop along with orifice plate, Pa

α :

Angle of attack

ν :

Kinematic viscosity

μ :

Dynamic viscosity

ρ :

Density

β :

Orifice to pipe diameter ratio

ξ :

Thermo-hydraulic performance parameter

r:

Roughened surface

s:

Smooth surface

References

  1. Prasad K, Mullick SC. Heat transfer characteristics of a solar air heater used for drying purposes. Appl Energy. 1983;13:83–93.

    Article  Google Scholar 

  2. Prasad BN, Saini JS. Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Sol Energy. 1988;41:6555–60.

    Article  Google Scholar 

  3. Saini SK, Saini RP. Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol Energy. 2008;82(12):1118–30.

    Article  CAS  Google Scholar 

  4. Jain SK, Agrawal GD, Mishra R. Experimental investigation of the thermo-hydraulic performance of the solar air heater having arc-shaped ribs with multiple gaps. ASME J Thermal Sci Eng Appl 2020;12(1).

  5. Kumar A, Saini RP, Saini JS. Experimental investigation on heat transfer and fluid flow characteristics of air flowing a rectangular duct with multi V-shaped rib with gap roughness on the heated plate. Sol Energy. 2012;86(6):1733–49.

    Article  Google Scholar 

  6. Lanjewar A, Bhagoria JL, Sarviya RM. Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate. Energy. 2011;36(7):4531–41.

    Article  Google Scholar 

  7. Momin AME, Saini JS, Solanki SC. Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. Int J Heat Mass Transf. 2002;45(16):3383–96.

    Article  Google Scholar 

  8. Sahu MM, Bhagoria JL. Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater. Renew Energy. 2005;30(13):2057–63.

    Article  CAS  Google Scholar 

  9. Aharwal KR, Gandhi BK, Saini JS. Experimental investigation on heat transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew Energy. 2008;33:585–96.

    Article  CAS  Google Scholar 

  10. Caliskan S. Experimental investigation of heat transfer in a channel with new winglet-type vortex generators. Int J Heat Mass Transf. 2014;78:604–14.

    Article  Google Scholar 

  11. Sari A, Sadi M, Shafiei Sabet G, Mohammadiun M, Mohammadiun H. Experimental analysis and exergetic assessment of the solar air collector with delta winglet vortex generators and baffles. J Therm Anal Calorim. 2021;145(3):867–85.

    Article  CAS  Google Scholar 

  12. Layek A, Saini JS, Solanki SC. Effect of chamfering on heat transfer and friction characteristics of solar air heater having absorber plate roughened with compound turbulators. Renew Energy. 2009;34(5):1292–8.

    Article  CAS  Google Scholar 

  13. Promvonge P, Khanoknaiyakarn C, Kwankaomeng S, Thianpong C. Thermal behavior in solar air heater channel fitted with combined rib and delta winglet. Int Commun Heat Mass Tran. 2011;38:749–56.

    Article  Google Scholar 

  14. Bekele A, Mishra M, Dutta S. Performance characteristics of solar air heater with surface mounted obstacles. Energy Converse Manag. 2014;85:603–11.

    Article  Google Scholar 

  15. Alam T, Saini RP, Saini JS. Experimental investigation on heat transfer enhancement due to V-shaped perforated block in a rectangular duct of solar air heater. Energy Convers Manag. 2014;81:374–83.

    Article  Google Scholar 

  16. Singh S, Chander S, Saini JS. Investigations on thermo-hydraulic performance due to flow-attack-angle in V-down rib with a gap in a rectangular duct of the solar air heater. Appl Energy. 2012;97:907–12.

    Article  Google Scholar 

  17. Kumar A, Layek A. Nusselt number and fluid flow analysis of solar air heater having transverse circular rib roughness on absorber plate using LCT and computational technique. Therm Sci Eng Progr. 2019;14:100398.

    Article  Google Scholar 

  18. Kumar A, Layek A. Thermo-hydraulic performance of solar air heater having twisted rib over the absorber plate. Int J Therm Sci. 2018;133:181–95.

    Article  Google Scholar 

  19. Kumar A, Layek A. Heat transfer measurement in a rectangular channel of solar air heater with winglet-type ribs using liquid crystal thermography. ASME J Therm Sci Eng Appl. 2021;14(4):041006.

    Article  Google Scholar 

  20. Kumar A, Layek A. Nusselt number and friction characteristics of a solar air heater that has a winglet type vortex generator in the absorber surface. Exp Thermal Fluid Sci. 2020;23:110204.

    Article  Google Scholar 

  21. ASHRAE Standard 93-97, Method of testing to determine the Thermal performance of solar collector, ASHRAE; 1977, 93-97:1–34.

  22. Stasieka J, Stasieka A, Jewartowskia M, Collins MW. Liquid crystal thermography and true color digital image processing. Optic Laser Technol. 2006;38:243–56.

    Article  Google Scholar 

  23. Webb RL, Eckert ERG, Goldstein RJ. Generalized heat transfer and friction correlation for tubes with repeated rib roughness. Int J Heat Mass Tran. 1971;14:601–17.

    Article  Google Scholar 

  24. McAdams WH. Heat transmission. New York: McGraw-Hill; 1942.

    Google Scholar 

  25. Kays WM, Perkin H. Forced convection internal flow in ducts. In: Rohsenow WM, Hartnett IV, editors. Handbook of heat transfer. McGraw-Hill; 1985.

    Google Scholar 

  26. Coleman HW, Steele WG. Experimentation and uncertainty analysis for engineers. 2nd ed. New York: Wiley; 1999.

    Google Scholar 

Download references

Acknowledgements

The authors thankfully appreciated SERB, DST, Govt. of India for allowing financial support in instigating the experimental-based research work in the Department of Mechanical Engineering, NIT Durgapur, India, File. No SERB-DST Grant: EEQ/2018/001012, dated: 26/02/2019.

Funding

Funding was provided by Department of Science and Technology, Ministry of Science and Technology (SB/EMEQ-314/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix AU: Uncertainty analysis

Appendix AU: Uncertainty analysis

The error of all the measured values leads to achieving some amount of uncertainty in results for the collected data. The uncertainty of an evaluated parameter may be computed as [26]:

$$\delta f_{{\text{e}}} = \pm \sqrt {\left[ {\sum\limits_{{j = 1}}^{n} {\left( {\frac{{\partial f_{\text{e}} }}{{\partial x_{\text{j}} }}\delta x_{\text{j}} } \right)^{2} } } \right]}$$
(Au.0)

where, \(\delta f_{\text{e}}\), total error encountered for the parameters,\(\delta {x}_{j}\), each parameter error, \(\frac{{\partial f_{\text{e}} }}{{\partial x_{j} }}\) known as sensitivity coefficient. The sampling procedure for the relevant data are shown below:

Thermo-physical properties of air are represented as:

$${Cp}_{\text{a}}=1006 {\left(\frac{{T}_{mf}}{293}\right)}^{0.0155}$$
$${\mu }_{\text{a}}=1.81 x {10}^{-5} {\left(\frac{{T}_{\text{mf}}}{293}\right)}^{0.735}$$
$${K}_{\text{a}}=0.0275 {\left(\frac{{T}_{\text{mf}}}{293}\right)}^{0.86}$$

ρa = 1.174 kg m−3.

Sl. no.

Measured data

Values

1

Absorber plate length/mm, Ld

1240 mm

2

Duct width/mm, W

160 mm

3

Duct height/mm, H

40 mm

4

Diameter of pipe/mm, dp

80 mm

5

Diameter of orifice meter/mm, do

40 mm

6

Orifice meter pressure head, Δho

11.3 cm of H2O

7

Pressure drop*(test section)/Pa, ΔPd

18 Pascal

8

Inlet air temperature/°C, Ti

25.25 °C

9

Outlet air temperature/°C, To

29.87 °C

10

Temperature rise, ΔT

4.62 °C

11

Mean air temperature/°C, Tmf

27.56 °C

12

Mean plate temperature/°C, Tlc

40.55 °C

13

Mass flow rate of air/ kg s−1, ṁ

0.0404 kg s−1

14

Heat transfer to air/W, Qconv

187.84 W

15

Heat transfer coefficient/ W m−2 K, h

70.61 W m−2 K

16

Friction factor, fr

0.01889

17

Nusselt number, Nu

172.03

AU.1: Duct hydraulic diameter, D h

$${D}_{\text{h}}= \frac{4WH}{2\left(W+H\right)}$$

where W = 160 mm, H = 40 mm.

Dh = 64 mm

$$\frac{{D}_{\text{h}}}{\partial W}= \frac{{D}_{\text{h}}}{W}- \frac{{D}_{\text{h}}}{\left(W+H\right)}= 1.28$$
$$\frac{{D}_{\text{h}}}{\partial H}= \frac{2W}{\left(W+H\right)}- \frac{2WH}{\left(W+H\right)}=0.08$$

Using Eq. (AU.0);

$$\frac{{\delta D}_{\text{h}}}{{D}_{\text{h}}}= {\left[{\left(\frac{{\partial D}_{\text{h}}}{\partial W}\delta W\right)}^{2} + {\left(\frac{{\partial D}_{\text{h}}}{\partial H}\delta H\right)}^{2}\right]}^{1/2}$$

 = 0.1%

AU.2: Duct area, A duc

Aduc = WH = 6400 mm2

$$\frac{\partial {A}_{\text{duc}}}{\partial W}=H$$

 = 40 mm

$$\frac{\partial {A}_{\text{duc}}}{\partial W}=W$$

 = 160 mm.

Using Eq. (AU.0);

$$\frac{\delta {A}_{\text{duc}}}{{A}_{\text{duc}}}={\left[{\left(\frac{\partial {A}_{\text{duc}}}{\partial W}\delta W\right)}^{2}+ {\left(\frac{\partial {A}_{\text{duc}}}{\partial H}\delta H\right)}^{2}\right]}^{1/2}$$

 = 0.1288%

AU.3: Area of absorber plate, AP

AP = WLd.

\(\frac{\partial {A}_{\text{p}}}{\partial W}={L}_{\text{d}}\) = 1240 mm.

\(\frac{\partial {A}_{\text{p}}}{\partial {L}_{\text{d}}}=W\) = 160 mm.

Using Eq. (AU.0);

$$\frac{\delta {A}_{\text{p}}}{{A}_{\text{p}}}={\left[{\left(\frac{\partial {A}_{\text{p}}}{\partial {L}_{\text{d}}}\delta {L}_{\text{d}}\right)}^{2}+ {\left(\frac{\partial {A}_{\text{p}}}{\partial W}\delta W\right)}^{2}\right]}^\frac{1}{2}$$
$$\frac{\delta {A}_{\text{p}}}{{A}_{\text{p}}}={\left[{\left(\frac{\delta {L}_{\text{d}}}{{L}_{\text{d}}}\right)}^{2}+ {\left(\frac{\delta W}{W}\right)}^{2}\right]}^\frac{1}{2}$$
$$\frac{\delta {A}_{\text{p}}}{{A}_{\text{p}}}= 0.000864= 0.0864 \%$$

AU.4: Orifice throat area, A ori

Aori = \(\left( {\frac{\pi }{4}D_{0}^{2} } \right)\) = 1256.6 mm2.

Derivatives was written as:

$$\frac{{\partial A_{\text{ori}} }}{{\partial D_{\text{o}} }} = \frac{{2\pi D_{\text{o}} }}{4} = \frac{{\pi D_{\text{o}} }}{2}$$

Using Eq. (AU.0);

$$\frac{{\delta A_{\text{ori}} }}{{A_{\text{ori}} }} = \left[ {\left( {\frac{{\partial A_{\text{ori}} }}{{\partial D_{\text{o}} }}\delta D_{\text{o}} } \right)^{2} } \right]^{0.5}$$
$$\frac{{\delta A_{\text{ori}} }}{{A_{\text{ori}} }} = \frac{{2 \times \delta D_{\text{o}} }}{{D_{\text{o}} }}$$

 = 0.25%

AU.5: Mass flow rate,\(\mathop {\varvec{m}}\limits^{*}\)

$$\mathop {\mathop m\limits }\limits^{{}} = C_{\text{d}} A_{\text{ori}} \left[ {\frac{{2P_{\text{atm}} }}{{RT_{\text{o}} }}(\Delta P)_{\text{o}} } \right]^{0.5}$$

\(\mathop m\limits^{*}\) = fn [Cd, Aori, Patm, To, (∆P) o].

Using Eq. (AU.0);

$$\frac{{\delta \mathop m\limits^{ \bullet } }}{{\mathop m\limits^{ \bullet } }} = \left[ {\left( {\frac{{\delta C_{\text{d}} }}{{C_{\text{d}} }}} \right)^{2} + \left( {\frac{{\delta A_{\text{ori}} }}{{A_{\text{ori}} }}} \right)^{2} + \frac{1}{4}\left( {\frac{{\delta T_{\text{o}} }}{{T_{\text{o}} }}} \right)^{2} + \frac{1}{4}\left( {\frac{{\delta P_{\text{atm}} }}{{P_{\text{atm}} }}} \right)^{2} + \frac{1}{4}\left( {\frac{{\delta (\Delta P)_{\text{o}} }}{{\Delta P_{\text{o}} }}} \right)^{2} } \right]^{0.5}$$

As δCd/Cd = 1.6%

δAori/Aori = 0.25%

δ (∆P)o/(∆P)o = (0.001/1108.53).

δ \(\mathop m\limits^{*}\)/\(\mathop m\limits^{*}\) = 0.01683 = 1.68%

AU.6: Air density, ρ a

$$\rho_{\text{a}} = \frac{{P_{\text{atm}} }}{{RT_{\text{mf}} }}\alpha \frac{{P_{\text{atm}} }}{{T_{\text{mf}}}}$$

Using Eq. (AU.0);

$$\frac{{\delta \rho_{\text{a}} }}{{\rho_{\text{a}} }} = \left[ {\left( {\frac{{\delta P_{\text{atm}} }}{{P_{\text{atm}} }}} \right)^{2} + \left( {\frac{{\delta T_{\text{o}} }}{{T_{\text{o}} }}} \right)^{2} } \right]^{0.5}$$

Substituting the values of

$$\frac{{\delta P_{\text{atm}} }}{{P_{\text{atm}} }} = \frac{0.05}{{99}}$$

and

$$\frac{{\delta T_{\text{o}} }}{{T_{\text{o}} }} = \frac{0.25}{{29.87}}$$
$$\frac{{\delta \rho_{\text{a}} }}{{\rho_{\text{a}} }} = 8.38 \times 10^{ - 3} = 0.84\%_{{}}$$

AU.7: Velocity of air, V a

$${V}_{\text{a}}= \frac{\dot{m}}{{\rho }_{\text{a}}WH}$$

Using Eq. (AU.0);

$$\frac{\delta {V}_{\text{a}}}{{V}_{\text{a}}}={\left[{\left(\frac{\delta \dot{m}}{\dot{m}}\right)}^{2}+ {\left(\frac{\delta {\rho }_{\text{a}}}{{\rho }_{\text{a}}}\right)}^{2}+{\left(\frac{\delta W}{W}\right)}^{2}+ {\left(\frac{\delta H}{H}\right)}^{2}\right]}^{1/2}$$
$$\frac{\delta {V}_{\text{a}}}{{V}_{\text{a}}}=0.01916=1.92 \%$$

AU.8: Heat transfer, Q conv

$$Q_{\text{conv}} = \mathop m\limits c_{\text{p}} (T_{\text{o}} - T_{\text{i}} ) = \mathop m\limits c_{\text{p}} \Delta T$$

Using Eq. (AU.0);

$$\frac{{\delta Q_{\text{conv}} }}{{Q_{\text{conv}} }} = \left[ {\left( {\frac{\delta \mathop m\limits }{{\mathop m\limits }}} \right)^{2} + \left( {\frac{{\delta c_{\text{p}} }}{{c_{\text{p}} }}} \right)^{2} + \left( {\frac{\delta (\Delta T)}{{\Delta T}}} \right)^{2} } \right]^{0.5}$$
$$\frac{{\delta Q_{\text{conv}} }}{{Q_{\text{conv}} }} = 0.0566 = 5.6\%$$

AU.9: Heat transfer coefficient, h

$$h= \frac{{Q}_{\text{u}}}{{A}_{\text{p}}\left({T}_{\text{lc}}-{T}_{\text{mf}}\right)}= \frac{{Q}_{\text{u}}}{{A}_{\text{p}}\left(\Delta {T}_{\text{m}}\right)}$$

Using Eq. (AU.0);

$$\frac{\delta h}{h}={\left[{\left(\frac{\delta \dot{{Q}_{\text{u}}}}{{Q}_{\text{u}}}\right)}^{2}+ {\left(\frac{\delta {A}_{\text{p}}}{{A}_{\text{p}}}\right)}^{2}+{\left(\frac{\delta \Delta {T}_{\text{mf}}}{{\Delta T}_{\text{mf}}}\right)}^{2}\right]}^{1/2}$$
$$\frac{\delta h}{h}=0.06=6 \%$$

AU.10: Nusselt number, Nu

Nusselt number is calculated by,

$$Nu= \frac{h{D}_{\text{h}}}{{k}_{\text{a}}}$$

Using Eq. (AU.0);

$$\frac{\delta Nu}{Nu}={\left[{\left(\frac{\delta h}{h}\right)}^{2}+ {\left(\frac{\delta {D}_{\text{h}}}{{D}_{\text{h}}}\right)}^{2}+{\left(\frac{\delta {k}_{\text{a}}}{{k}_{\text{a}}}\right)}^{2}\right]}^{1/2}$$

As, δka = 0.00001 W/mK,

$$\frac{\delta Nu}{{Nu}} = 0.0599 = 5.9\%$$

AU.11: Reynolds number, Re

Reynolds number evaluated by;

$$Re= \frac{{{\rho }_{\text{a}}V}_{\text{a}}{D}_{\text{h}}}{\mu }$$

Using Eq. (AU.0);

$$\frac{\delta Re}{Re}={\left[{\left(\frac{\delta {V}_{\text{a}}}{{V}_{\text{a}}}\right)}^{2}+ {\left(\frac{\delta {\rho }_{\text{a}}}{{\rho }_{\text{a}}}\right)}^{2}+ {\left(\frac{\delta {D}_{\text{h}}}{{D}_{\text{h}}}\right)}^{2}+ {\left(\frac{\delta \mu }{\mu }\right)}^{2}\right]}^{1/2}$$

As δµ = 0.001 N-s/m2,

$$\frac{{\delta {\text{Re}} }}{{\text{Re}}} = 0.0212 = 2.12\%$$

AU.12: Friction factor, f r

The friction factor is written as;

$${f}_{\text{r}}= \frac{{2\left(\Delta P\right)}_{\text{d}}{D}_{\text{h}}}{4{\rho }_{\text{a}}{L}_{\text{d}}{V}_{\text{a}}^{2}}$$

Using Eq. (AU.0);

$$\frac{\delta {f}_{\text{r}}}{{f}_{\text{r}}}={\left[{\left(\frac{\delta {V}_{\text{a}}}{{V}_{\text{a}}}\right)}^{2}+ {\left(\frac{\delta {\rho }_{\text{a}}}{{\rho }_{\text{a}}}\right)}^{2}+ {\left(\frac{\delta {D}_{\text{h}}}{{D}_{\text{h}}}\right)}^{2}+ {\left(\frac{\delta {L}_{\text{d}}}{{L}_{\text{d}}}\right)}^{2}+{\left(\frac{\delta {\left(\Delta P\right)}_{\text{d}}}{{\left(\Delta P\right)}_{\text{d}}}\right)}^{2}\right]}^{1/2}$$
$$\frac{{\delta f_{\text{r}} }}{{f_{\text{r}} }} = 0.0394 = 3.94\%$$

Sl. no

Parameters

Values

Uncertainty %

1

Mass flow of air, \(\mathop m\limits^{*}\) kg/s

0.0053–0.0404

1.68–3.01

2

Heat transfer coefficient, h, W/m2 K

9.12–70.61

3.12–6.56

3

Nusselt number, Nu

22.02–172.03

3.12–6.00

4

Friction factor, fr

0.01888–0.04149

3.91–6.45

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Layek, A. Thermo-hydraulic performance of solar air heater having winglet type roughness element. J Therm Anal Calorim 147, 10481–10495 (2022). https://doi.org/10.1007/s10973-022-11286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11286-8

Keywords

Navigation