Skip to main content
Log in

Pyrolysis kinetics of manganese carbonate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, to better control the morphology of Mn3O4 prepared by roasting micron-sized spherical MnCO3, the pyrolysis kinetics of MnCO3 was investigated by measuring the thermogravimetry (TG) curves under different heating rates in air, and the pyrolysis kinetic mechanism function of MnCO3 was also calculated. The TG results showed that the pyrolysis of MnCO3 can be mainly divided into two stages, and the corresponding temperature range was 300–500 °C and 840–900 °C, respectively. The kinetics results showed that the activation energies of the two reaction stages of MnCO3 calculated using FWO method, KAS method, and Starink method were 315.13, 317.41, 318.54 kJ mol−1, and 1456.70, 1454.19, 1456.08 kJ mol−1, respectively. The kinetics mechanism models of two stages were determined as random nucleation and subsequent growth model using the master plot method, and the corresponding kinetic mechanism functions were G(α) = [− ln(1 − α)]3/2 and G(α) = [− ln(1 − α)]3/4, respectively. In addition, the mechanism function analysis results showed that an increase in the heating rate slightly affected the temperature difference (ΔT) for the completion of the reaction at each stage, which would have a different effect on the morphology of the product. The roasting experiment results confirmed the above theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee S, Lee JW, Eom W, Jung YK, Han TH. Aqueous-processable surface modified graphite with manganese oxide for lithium-ion battery anode. Appl Surf Sci. 2020;526:146720.

    Article  CAS  Google Scholar 

  2. Zhang T, Liang H, Xie C, Qiu H, Fang Z, Wang L, Yue H, Chen G, Wei Y, Wang C, Zhang D. Morphology-controllable synthesis of spinel zinc manganate with highly reversible capability for lithium ion battery. Chem Eng J. 2017;326:820–30.

    Article  CAS  Google Scholar 

  3. Angelopoulou P, Paloukis F, Słowik G, Wójcik G, Avgouropoulos G. Combustion-synthesized LixMn2O4-based spinel nanorods as cathode materials for lithium-ion batteries. Chem Eng J. 2017;311:191–202.

    Article  CAS  Google Scholar 

  4. Li Y, Lin Z, Li Y, Chen C, He Y, Yang X. Preparation and electrochemical properties of Li-rich spinel-type lithium manganate coated LiMn2O4. Mater Res Bull. 2011;46:2450–5.

    Article  CAS  Google Scholar 

  5. Li Y, Tan H, Yang XY, Goris B, Verbeeck J, Bals S, Colson P, Cloots R, Tendeloo GV, Su BL. Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties. Small. 2011;4:475–83.

    Article  Google Scholar 

  6. Baldi M, Finocchio E, Milella F, Busca G. Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Appl Catal B-Environ. 1998;1:43–51.

    Article  Google Scholar 

  7. Askarinejad A, Bagherzadeh M, Morsali A. Catalytic performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Appl Surf Sci. 2010;22:6678–82.

    Article  Google Scholar 

  8. Lee HR, Seo HR, Lee B, Cho BW, Lee KY, Oh SH. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel. Appl Surf Sci. 2017;392:448–55.

    Article  CAS  Google Scholar 

  9. Ramulu B, Nagaraju G, Sekhar SC, Yu JS. Waste tissue papers templated highly porous Mn3O4 hollow microtubes prepared via biomorphic method for pseudocapacitor applications. J Alloy Compd. 2019;772:925–32.

    Article  CAS  Google Scholar 

  10. Xiong T, Lee WSV, Huang X, Xue J. Mn3O4/reduced graphene oxide based supercapacitor with ultra-long cycling performance. J Mater Chem A. 2017;25:12762–8.

    Article  Google Scholar 

  11. Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Fulari VJ, Lokhande CD. A novel chemical synthesis of interlocked cubes of hausmannite Mn3O4 thin films for supercapacitor application. J Alloy Compd. 2009;1:218–21.

    Article  Google Scholar 

  12. Ahmed KAM, Zeng Q, Wu K, Huang K. Mn3O4 nanoplates and nanoparticles: Synthesis, characterization, electrochemical and catalytic properties. J Solid State Chem. 2010;3:744–51.

    Article  Google Scholar 

  13. Mansournia M, Azizi F, Rakhshan N. A novel ammonia-assisted method for the direct synthesis of Mn3O4 nanoparticles at room temperature and their catalytic activity during the rapid degradation of azo dyes. J Phys Chem Solids. 2015;80:91–7.

    Article  CAS  Google Scholar 

  14. Gopalakrishnan K, Bagkar N, Ganguly R, Kulshreshtha SK. Synthesis of superparamagnetic Mn3O4 nanocrystallites by ultrasonic irradiation. J Cryst Growth. 2005;3:436–41.

    Article  Google Scholar 

  15. Liu L, Yang H, Wei J, Yang Y. Controllable synthesis of monodisperse Mn3O4 and Mn2O3 nanostructures via a solvothermal route. Mater Lett. 2011;65:694–7.

    Article  CAS  Google Scholar 

  16. Cao S, Han T, Peng L, Liu B. Hydrothermal preparation, formation mechanism and gas-sensing properties of novel Mn3O4 nano-octahedrons. Mater Lett. 2019;246:210–3.

    Article  CAS  Google Scholar 

  17. Dhaouadi H, Madani A, Touati F. Synthesis and spectroscopic investigations of Mn3O4 nanoparticles. Mater Lett. 2010;21:2395–8.

    Article  Google Scholar 

  18. Wang W, Yang T, Yan G, Li H. Synthesis of Mn3O4 hollow octahedrons and their possible growth mechanism. Mater Lett. 2012;82:237–9.

    Article  CAS  Google Scholar 

  19. Sekhar SC, Nagaraju G, Yu JS. Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors. Appl Surf Sci. 2017;435:398–405.

    Article  Google Scholar 

  20. Şahin B, Aslan B, Kaya T. A novel amperometric sweat sensor approach through characterization of Hausmannite (Mn3O4) thin films. Mat Sci Semicon Proc. 2019;98:1–6.

    Article  Google Scholar 

  21. Ding X, Zhou H, Wang M, Chen M, Li L, Yang Z, Wang X. High rate performance and long cycle stability of lithium manganate nanofibers by tuned pre-oxidation treatment. J Alloy Compd. 2017;724:975–80.

    Article  CAS  Google Scholar 

  22. Southard C, Moore GE. High-temperature heat content of Mn3O4, MnSiO3 and Mn3C. J Am Chem Soc. 1942;8:1769–70.

    Article  Google Scholar 

  23. Ursu I, Alexandrescu R, Mihailescu IN, Morjan I, Jianu V, Popescu C. Kinetic evolution during the laser/thermal preparation of Mn3O4 from MnCO3. J Phys B-At Mol Opt. 1986;23:825–9.

    Article  Google Scholar 

  24. Yi LX, Hu G, Huang H. Morphology evolution of exfoliated trimanganese tetroxide nanosheets and mass transfer model of growth kinetics in supercritical N. N-dimethylformamide Powder Technol. 2014;259:109–16.

    Article  CAS  Google Scholar 

  25. Liang B, Hu J, Yuan P, Li C, Li R, Liu Y, Zeng K, Yang G. Kinetics of the pyrolysis process of phthalonitrile resin. Thermochim Acta. 2019;672:133–41.

    Article  CAS  Google Scholar 

  26. Li J, Lai Y, Zhu X, Liao Q, Xia A, Huang Y, Zhu X. Pyrolysis kinetics and reaction mechanism of the electrode materials during the spent LiCoO2 batteries recovery process. J Hazard Mater. 2020;398:122955.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao R, Yang W, Cong X, Dong K, Xu J, Wang D, Yang X. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy. 2020;201:117537.

    Article  CAS  Google Scholar 

  28. Liu H, Chen B, Wang C. Pyrolysis kinetics study of biomass waste using shuffled complex evolution algorithm. Fuel Process Technol. 2020;208:106509.

    Article  CAS  Google Scholar 

  29. Ding Z, Chen H, Liu J, Cai H, Evrendilek F, Buyukada M. Pyrolysis dynamics of two medical plastic wastes: Drivers, behaviors, evolved gases, reaction mechanisms, and pathways. J Hazard Mater. 2021;402:123472.

    Article  CAS  PubMed  Google Scholar 

  30. Jia C, Chen J, Bai J, Yang X, Song S, Wang Q. Kinetics of the pyrolysis of oil sands based upon thermogravimetric analysis. Thermochim Acta. 2018;666:66–74.

    Article  CAS  Google Scholar 

  31. Tang W, Liu Y, Zhang H, Wang Z, Wang C. New Temperature Integral Approximate Formula for Non-isothermal Kinetic Analysis. J Therm Anal Calorim. 2003;1:309–15.

    Google Scholar 

  32. S̆estákS̆atavaWendlandt JVWW. The study of heterogeneous processes by thermal analysis. Thermochim Acta. 1973;1973(5):333–556.

    Google Scholar 

  33. Ozawa T. A new method of analysis of thermogravimetric data. B Chem Soc Jpn. 1965;11:1881–6.

    Article  Google Scholar 

  34. Starink J. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;1:97–104.

    Article  Google Scholar 

  35. Friedman HL. Kinetics and Gaseous Products of Thermal Decomposition of Polymers. J Macromol Sci A. 1967;1:57–79.

    Article  CAS  Google Scholar 

  36. Reich L, Levi DW. Dynamic thermogravimetric analysis in polymer degradation. J Polym Sci: Macromolec Rev. 1967;1:173–275.

    CAS  Google Scholar 

  37. Kissinger HE. reaction kinetics in differential thermal analysis. Anal Chem. 1957;11:1702–6.

    Article  Google Scholar 

  38. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C: Polymer Letters. 1966;5:323–8.

    Google Scholar 

  39. Bagchi TP, Sen PK. Combined differential and integral method for analysis of non-isothermal kinetic data. Thermochim Acta. 1981;2:175–89.

    Article  Google Scholar 

  40. Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method. Thermochim Acta. 1996;2:309–23.

    Article  Google Scholar 

  41. Malek J, Smrcka V. The kinetic analysis of the crystallization processes in glasses. Thermochim Acta. 1991;1:153–69.

    Article  Google Scholar 

  42. Maia AAD, Morais LCD. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresource Technol. 2016;204:157–63.

    Article  CAS  Google Scholar 

  43. Samoilov A, Buchmayr B, Cerjak H. A thermodynamic model for composition and chemical driving force for nucleation of complex carbonitrides in microalloyed steel. Steel Res. 1994;7:298–304.

    Article  Google Scholar 

  44. Zaitseva N, Carman L. Rapid Growth of KDP-type Crystals. Prog Cryst Growth Ch. 2001;1:1–118.

    Article  Google Scholar 

  45. Yan S, Qiu YR. Preparation of electronic grade manganese sulfate from leaching solution of ferromanganese slag. T Nonferr Metal Soc. 2014;11:3716–21.

    Article  Google Scholar 

  46. Huang W, Geng X, Zhou Y. Primary spacing selection of constrained dendritic growth. J Cryst Growth. 1993;1:105–15.

    Google Scholar 

  47. Gäumann M, Bezençon C, Canalis P, Kurz W. Single-crystal laser deposition of superalloys: processing–microstructure maps. Acta Mater. 2001;6:1051–62.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (52004111, 51864019), Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology, the “Double Thousand Plan” Talent Project of Jiangxi Province (jxsq2018106051), and Jiangxi Province Natural Science Foundation of China (20181BAB206019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Zhang, Z. et al. Pyrolysis kinetics of manganese carbonate. J Therm Anal Calorim 147, 10801–10813 (2022). https://doi.org/10.1007/s10973-022-11251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11251-5

Keywords

Navigation