Skip to main content
Log in

Exergoeconomic, water footprint-based exergoenvironmental impact and optimization of a new flash-binary geothermal power generation system using an improved grey relational method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new modified flash-binary geothermal power system with ejector-enhanced dual-pressure evaporation organic Rankine cycle (MF-EDORC) is proposed and investigated using seven pure working fluids. The exergy, exergoeconomic, and water footprint-based exergoenvironmental analyses are conducted to evaluate and compare the comprehensive performance of the new MF-EDORC and basic flash-binary system based on dual-pressure evaporation cycle (F-DORC). Non-dominated sorting genetic algorithm II and three decision-making methods are applied to ascertain the highest net power and the lowest total product cost, environmental impact (EI), and water footprint (WF) rates in MF-EDORC. Finally, an improved grey relational analysis is carried out to find the best working fluid for comprehensive performance. According to the results, the thermodynamic performance of MF-EDORC is improved compared with basic F-DORC for all selected fluids, and the maximum improvement is about 53.27% for R601. Improved grey relational analysis indicates that R600a with the highest degree of 0.834 is the best working fluid in MF-EDORC in which the net power, the energy, and exergy efficiencies reach 3430 kW, 8.8%, and 37.61%, respectively, with a 15.2% improvement compared with the basic F-DORC at the optimal point obtained through the Shannon entropy method. Moreover, the total product cost, EI, and WF rates are calculated by 4.047 $ h−1, 862.21 mPts h−1, and 18.53 kg H2O h−1, respectively, at this optimal point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CRF:

Capital recovery factor

DORC:

Dual-pressure evaporation organic Rankine cycle

EI:

Environmental impact

F-DORC:

Basic flash-binary DORC cycle

LINMAP:

Linear programming technique for multidimensional analysis of preference TOPSIS technique for order of preference by similarity to ideal Solution

MF-EDORC:

Modified flash-ejector-enhanced DORC binary cycle

NSGA-II:

Non-dominated sorting genetic algorithm II

ORC:

Organic Rankine cycle

WF:

Water footprint

A :

Area (m2)

\(\dot{B}\) :

Environmental impact rate associated with exergy (mPts s1)

B :

Environmental impact per unit of exergy (mPts kJ1)

\(\dot{C}\) :

Cost rate ($ s1)

c :

Cost per unit of exergy ($ kJ1)

C P :

Specific heat (kJ kg1 K1)

d :

Diameter (m)

Er:

Entrainment ratio

\(\dot{E}x\) :

Exergy flow rate (kW)

F :

Temperature difference correction factor

\(\dot{G}\) :

Water footprint rate (kg H2O s1)

G :

Water consumption per exergy unit (kg H2O kJ1)

H :

Component-related water consumption (kg H2O)

\(\dot{H}\) :

Component-related water consumption rate (kg H2O s1)

h :

Specific enthalpy (kJ kg1)

ir:

Interest rate (%)

k :

Thermal conductivity (W m1 K1)

LMTD:

Logarithmic mean temperature difference (K)

M :

Mass (kg)

\(\dot{m}\) :

Mass flow rate (kg s1)

P :

Pressure (kPa)

Pr:

Prandtl number

\(\dot{Q}\) :

Heat transfer rate (kW)

Re:

Reynolds number

R f :

Fouling resistance (mK W1)

s :

Specific entropy (kJ kg1 K1)

SL:

System life (year)

T :

Temperature (K)

U :

Overall heat transfer coefficient (W m2 K1)

V :

Volume (m3)

\(\dot{W}\) :

Power (kW)

x :

Quality

Y :

Component-related environmental impact (mPts)

\(\dot{Y}\) :

Component-related environmental impact rate (mPts s1)

Z :

Capital investment and operating and maintenance cost ($)

\(\dot{Z}\) :

Capital investment and operating and maintenance cost rate ($ s1)

β :

Chevron angle (°)

\(\lambda\) :

Convective coefficient (W m2 K1)

\(\eta\) :

Efficiency (%)

\(\mu\) :

Dynamic viscosity (Pa s)

\(\rho\) :

Density (kg m3)

\(\upsilon\) :

Fluid velocity (m s1)

\(\omega\) :

Eco 99 coefficient (mPts kg1)

\(\delta\) :

Thickness (m)

\(\varphi\) :

Maintenance factor

0:

Dead state

c:

Cold stream

ch:

Channel

Cond:

Condenser

D:

Destruction

d:

Diffuser

e:

Equivalent

en:

Energy

ex:

Exergy

Exp:

Expander

F:

Fuel

h:

Hot stream

H:

Hydraulic

HPE:

High-pressure evaporator

HPT:

High-pressure turbine

i:

Inside

in:

Inlet

is:

Isentropic

L:

Loss

liq:

Liquid

LPE:

Low-pressure evaporator

LPT:

Low-pressure turbine

mc:

Mixing chamber

ns:

Nozzle section

o:

Outside

out:

Outlet

P:

Product

Pre:

Preheater

PU:

Pump

s:

Shell side

SHX:

Self-superheating heat exchanger

sn:

Suction nozzle

t:

Tube side

V:

Valve

vap:

Vapor

w:

Wall

FS:

Flash separator

References

  1. Zarrouk SJ, Purnanto MH. Geothermal steam-water separators: design overview. Geothermics. 2015;53:236–54.

    Article  Google Scholar 

  2. Sarr J-AR, Mathieu-Potvin F. Improvement of double-flash geothermal power plant design: a comparison of six interstage heating processes. Geothermics. 2015;54:82–95.

    Article  Google Scholar 

  3. Ozcan NY, Gokcen G. Thermodynamic assessment of gas removal systems for single-flash geothermal power plants. Appl Therm Eng. 2009;29(14–15):3246–53.

    Article  Google Scholar 

  4. Pambudi NA, Itoi R, Jalilinasrabady S, Jaelani K. Performance improvement of a single-flash geothermal power plant in Dieng, Indonesia, upon conversion to a double-flash system using thermodynamic analysis. Renew Energy. 2015;80:424–31.

    Article  Google Scholar 

  5. Jalilinasrabady S, Itoi R, Valdimarsson P, Saevarsdottir G, Fujii H. Flash cycle optimization of Sabalan geothermal power plant employing exergy concept. Geothermics. 2012;43:75–82.

    Article  Google Scholar 

  6. Guzović Z, Rašković P, Blatarić Z. The comparision of a basic and a dual-pressure ORC (Organic Rankine Cycle): geothermal power plant Velika Ciglena case study. Energy. 2014;76:175–86.

    Article  Google Scholar 

  7. Astolfi M, Romano MC, Bombarda P, Macchi E. Binary ORC (Organic Rankine Cycles) power plants for the exploitation of medium–low temperature geothermal sources–Part B: techno-economic optimization. Energy. 2014;66:435–46.

    Article  CAS  Google Scholar 

  8. Luo C, Huang L, Gong Y, Ma W. Thermodynamic comparison of different types of geothermal power plant systems and case studies in China. Renew Energy. 2012;48:155–60.

    Article  Google Scholar 

  9. Coskun A, Bolatturk A, Kanoglu M. Thermodynamic and economic analysis and optimization of power cycles for a medium temperature geothermal resource. Energy Convers Manag. 2014;78:39–49.

    Article  Google Scholar 

  10. Paloso G Jr, Mohanty B. A flashing binary combined cycle for geothermal power generation. Energy. 1993;18(8):803–14.

    Article  CAS  Google Scholar 

  11. Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles–A review of various applications. Renew Sust Energ Rev. 2011;15(8):3963–79.

    Article  CAS  Google Scholar 

  12. Vélez F, Segovia JJ, Martín MC, Antolín G, Chejne F, Quijano A. A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renew Sust Energ Rev. 2012;16(6):4175–89.

    Article  Google Scholar 

  13. Ziviani D, Beyene A, Venturini M. Advances and challenges in ORC systems modeling for low grade thermal energy recovery. Appl Energy. 2014;121:79–95.

    Article  Google Scholar 

  14. Imran M, Haglind F, Asim M, Alvi JZ. Recent research trends in organic Rankine cycle technology: a bibliometric approach. Renew Sustain Energ Rev. 2018;81:552–62.

    Article  CAS  Google Scholar 

  15. Kanog˘lu M, Cengel YA. Retrofitting a geothermal power plant to optimize performance: a case study. J Energy Resour Technol. 1999;121(4):295–301.

    Article  Google Scholar 

  16. Yari M. Exergetic analysis of various types of geothermal power plants. Renew Energy. 2010;35(1):112–21.

    Article  CAS  Google Scholar 

  17. Dagdas A. Performance optimisation of the combined single flash binary geothermal power plant. Int J Exergy. 2011;8(2):194–210.

    Article  Google Scholar 

  18. Pasek AD, Soelaiman TF, Gunawan C. Thermodynamics study of flash–binary cycle in geothermal power plant. Renew Sustain Energ Rev. 2011;15(9):5218–23.

    Article  CAS  Google Scholar 

  19. Zeyghami M. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle. Energy. 2015;88:765–74.

    Article  CAS  Google Scholar 

  20. Zhao Y, Wang J. Exergoeconomic analysis and optimization of a flash-binary geothermal power system. Appl Energy. 2016;179:159–70.

    Article  Google Scholar 

  21. Aali A, Pourmahmoud N, Zare V. Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran. Energy Convers Manag. 2017;143:377–90.

    Article  CAS  Google Scholar 

  22. Sadeghi M, Nemati A, Yari M. Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures. Energy. 2016;109:791–802.

    Article  CAS  Google Scholar 

  23. Baral S, Kim D, Yun E, Kim KC. Energy, exergy and performance analysis of small-scale organic Rankine cycle systems for electrical power generation applicable in rural areas of developing countries. Energies. 2015;8(2):684–713.

    Article  Google Scholar 

  24. Li G. Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part I: energy and exergy performance evaluation. Renew Sust Energ Rev. 2016;53:477–99.

    Article  CAS  Google Scholar 

  25. Heberle F, Brüggemann D. Thermo-economic evaluation of organic Rankine cycles for geothermal power generation using zeotropic mixtures. Energies. 2015;8(3):2097–124.

    Article  CAS  Google Scholar 

  26. Liu Q, Shen A, Duan Y. Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids. Appl Energy. 2015;148:410–20.

    Article  CAS  Google Scholar 

  27. Liu Q, Duan Y, Yang Z. Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids. Appl Energy. 2014;115:394–404.

    Article  CAS  Google Scholar 

  28. Kolahi M-R, Nemati A, Yari M. Performance optimization and improvement of a flash-binary geothermal power plant using zeotropic mixtures with PSO algorithm. Geothermics. 2018;74:45–56.

    Article  Google Scholar 

  29. Chen H, Goswami DY, Stefanakos EK. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew Sust Energ Rev. 2010;14(9):3059–67.

    Article  CAS  Google Scholar 

  30. Lecompte S, Huisseune H, Van Den Broek M, Vanslambrouck B, De Paepe M. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew Sust Energ Rev. 2015;47:448–61.

    Article  CAS  Google Scholar 

  31. Shengjun Z, Huaixin W, Tao G. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl Energy. 2011;88(8):2740–54.

    Article  Google Scholar 

  32. Mokarram NH, Mosaffa A. Investigation of the thermoeconomic improvement of integrating enhanced geothermal single flash with transcritical organic Rankine cycle. Energy Convers Manag. 2020;213:112831.

    Article  Google Scholar 

  33. Larsen U, Pierobon L, Haglind F, Gabrielii C. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection. Energy. 2013;55:803–12.

    Article  CAS  Google Scholar 

  34. Li J, Liu Q, Ge Z, Duan Y, Yang Z. Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze (E) for 100–200 °C heat sources. Energy Convers Manag. 2017;149:140–54.

    Article  CAS  Google Scholar 

  35. Zhou Y, Li S, Sun L, Zhao S, Talesh SSA. Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures. Energy. 2020;194:116785.

    Article  CAS  Google Scholar 

  36. Chen J, Jarall S, Havtun H, Palm B. A review on versatile ejector applications in refrigeration systems. Renew Sust Energ Rev. 2015;49:67–90.

    Article  Google Scholar 

  37. Haghparast P, Sorin MV, Richard MA, Nesreddine H. Analysis and design optimization of an ejector integrated into an organic Rankine cycle. Appl Therm Eng. 2019;159:113979.

    Article  Google Scholar 

  38. Li X, Li X, Zhang Q. The first and second law analysis on an organic Rankine cycle with ejector. Sol Energy. 2013;93:100–8.

    Article  Google Scholar 

  39. Li X, Zhao C, Hu X. Thermodynamic analysis of organic Rankine cycle with ejector. Energy. 2012;42(1):342–9.

    Article  CAS  Google Scholar 

  40. Kheiri R, Ghaebi H, Ebadollahi M, Rostamzadeh H. Thermodynamic modeling and performance analysis of four new integrated organic Rankine cycles (A comparative study). Appl Therm Eng. 2017;122:103–17.

    Article  CAS  Google Scholar 

  41. Li X, Huang H, Zhao W. A supercritical or transcritical Rankine cycle with ejector using low-grade heat. Energy Convers Manag. 2014;78:551–8.

    Article  CAS  Google Scholar 

  42. Stoppato A. Energetic and economic investigation of the operation management of an Organic Rankine Cycle cogeneration plant. Energy May. 2012;41(1):3–9.

    Article  CAS  Google Scholar 

  43. Quoilin S, Declaye S, Tchanche BF, Lemort V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Appl Therm Eng. 2011;31(14–15):2885–93.

    Article  CAS  Google Scholar 

  44. Liu Q, Duan Y, Yang Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids. Energy. 2013;63:123–32.

    Article  CAS  Google Scholar 

  45. Feidt M, Kheiri A, Pelloux-Prayer S. Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids. Energy. 2014;67:513–26.

    Article  Google Scholar 

  46. Hærvig J, Sørensen K, Condra TJ. Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery. Energy. 2016;96:592–602.

    Article  Google Scholar 

  47. Calm JM, Hourahan G. Refrigerant data update. Hpac Eng. 2007;79(1):50–64.

    Google Scholar 

  48. Li J, Ge Z, Duan Y, Yang Z, Liu Q. Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles. Appl Energy May. 2018;217:409–21.

    Article  CAS  Google Scholar 

  49. Bao J, Zhao L. A review of working fluid and expander selections for organic Rankine cycle. Renew Sust Energ Rev. 2013;24:325–42.

    Article  CAS  Google Scholar 

  50. Mondal S, Alam S, De S. Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector. Energy. 2018;163:849–62.

    Article  Google Scholar 

  51. Chen LX, Hu P, Sheng CC, Zhang N, Xie MN, Wang FX. Thermodynamic analysis of three ejector based organic flash cycles for low grade waste heat recovery. Energy Convers Manag. 2019;185:384–95.

    Article  Google Scholar 

  52. Sarkar J, Bhattacharyya S. Potential of organic Rankine cycle technology in India: working fluid selection and feasibility study. Energy. 2015;90:1618–25.

    Article  CAS  Google Scholar 

  53. DiPippo R. Geothermal double-flash plant with interstage reheating: an updated and expanded thermal and exergetic analysis and optimization. Geothermics. 2013;48:121–31.

    Article  Google Scholar 

  54. Bina SM, Jalilinasrabady S, Fujii H. Exergoeconomic analysis and optimization of single and double flash cycles for Sabalan geothermal power plant. Geothermics. 2018;72:74–82.

    Article  Google Scholar 

  55. Meng N, Li T, Jia Y, Qin H, Liu Q, Zhao W, et al. Techno-economic performance comparison of enhanced geothermal system with typical cycle configurations for combined heating and power. Energy Convers Manag. 2020;205:112409.

    Article  CAS  Google Scholar 

  56. Baccioli A, Antonelli M, Desideri U. Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery. Appl Energy. 2017;199:69–87.

    Article  CAS  Google Scholar 

  57. Wang J, Yan Z, Wang M, Li M, Dai Y. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm. Energy Convers Manag. 2013;71:146–58.

    Article  Google Scholar 

  58. Shah RK, Sekulic DP. Fundamentals of heat exchanger design. New Jersey: Wiley; 2003.

    Book  Google Scholar 

  59. Sinnott R. Chemical engineering design. Amsterdam: Elsevier; 2014.

    Google Scholar 

  60. Incropera FP, Lavine AS, Bergman TL, DeWitt DP. Fundamentals of heat and mass transfer. New Jersey: Wiley; 2007.

    Google Scholar 

  61. Kheiri A, Feidt M, Pelloux-Prayer S. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid. Energy. 2014;78:622–38.

    Article  Google Scholar 

  62. Barros JJC, Coira ML, de la Cruz López MP, del Caño GA. Sustainability optimisation of shell and tube heat exchanger, using a new integrated methodology. J Clean Prod. 2018;200:552–67.

    Article  Google Scholar 

  63. Caputo AC, Pelagagge PM, Salini P. Heat exchanger design based on economic optimisation. Appl Therm Eng. 2008;28(10):1151–9.

    Article  Google Scholar 

  64. Asadi M, Song Y, Sunden B, Xie G. Economic optimization design of shell-and-tube heat exchangers by a cuckoo-search-algorithm. Appl Therm Eng. 2014;73(1):1032–40.

    Article  Google Scholar 

  65. Zhang C, Liu C, Xu X, Li Q, Wang S. Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles. Energy. 2019;168:332–45.

    Article  CAS  Google Scholar 

  66. Kern DQ. Process heat transfer. New York: Tata McGraw-Hill Education; 1997.

    Google Scholar 

  67. Lecompte S, Huisseune H, Van den Broek M, De Schampheleire S, De Paepe M. Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system. Appl Energy. 2013;111:871–81.

    Article  Google Scholar 

  68. García-Cascales J, Vera-García F, Corberán-Salvador J, Gonzálvez-Maciá J. Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers. Int J Refrig. 2007;30(6):1029–41.

    Article  Google Scholar 

  69. Yan Y-Y, Lio H-C, Lin T-F. Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger. Int J Heat Mass Transf. 1999;42(6):993–1006.

    Article  CAS  Google Scholar 

  70. Bejan A, Tsatsaronis G, Moran MJ. Thermal design and optimization. New Jersey: Wiley; 1995.

    Google Scholar 

  71. Bejan A, Tsatsaronis G. Thermal design and optimization. New Jersey: Wiley; 1996.

    Google Scholar 

  72. Xin F, Ma T, Chen Y, Wang Q. Study on chemical spray etching of stainless steel for printed circuit heat exchanger channels. Nucl Eng Des. 2019;341:91–9.

    Article  CAS  Google Scholar 

  73. Ghaebi H, Namin AS, Rostamzadeh H. Exergoeconomic optimization of a novel cascade Kalina/Kalina cycle using geothermal heat source and LNG cold energy recovery. J Clean Prod. 2018;189:279–96.

    Article  CAS  Google Scholar 

  74. Boyaghchi FA, Chavoshi M, Sabeti V. Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid. Energy. 2015;91:685–99.

    Article  CAS  Google Scholar 

  75. Ebadollahi M, Rostamzadeh H, Pedram MZ, Ghaebi H, Amidpour M. Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery. Renew Energy. 2019;135:66–87.

    Article  CAS  Google Scholar 

  76. Meyer L, Tsatsaronis G, Buchgeister J, Schebek L. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy. 2009;34(1):75–89.

    Article  Google Scholar 

  77. Liu C, He C, Gao H, Xie H, Li Y, Wu S, et al. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment. Energy. 2013;56:144–54.

    Article  CAS  Google Scholar 

  78. Sun Z, Liu C, Xu X, Li Q, Wang X, Wang S, et al. Comparative carbon and water footprint analysis and optimization of Organic Rankine Cycle. Appl Therm Eng. 2019;158:113769.

    Article  CAS  Google Scholar 

  79. Fergani Z, Touil D, Morosuk T. Multi-criteria exergy based optimization of an Organic Rankine Cycle for waste heat recovery in the cement industry. Energy Convers Manag. 2016;112:81–90.

    Article  CAS  Google Scholar 

  80. Ding Y, Liu C, Zhang C, Xu X, Li Q, Mao L. Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid. Energy. 2018;145:52–64.

    Article  CAS  Google Scholar 

  81. Yi Z, Luo X, Yang Z, Wang C, Chen J, Chen Y, et al. Thermo-economic-environmental optimization of a liquid separation condensation-based organic Rankine cycle driven by waste heat. J Clean Prod. 2018;184:198–210.

    Article  Google Scholar 

  82. Ma X, Ye L, Qi C, Yang D, Shen X, Hong J. Life cycle assessment and water footprint evaluation of crude steel production: a case study in China. J Environ Manag. 2018;224:10–8.

    Article  Google Scholar 

  83. Bayareh M, Mohammadi M. Multi-objective optimization of a triple shaft gas compressor station using Imperialist Competitive Algorithm. Appl Therm Eng. 2016;109:384–400.

    Article  Google Scholar 

  84. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.

    Article  Google Scholar 

  85. Ahmadi MH, Sayyaadi H, Dehghani S, Hosseinzade H. Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power. Energy Convers Manag. 2013;75:282–91.

    Article  Google Scholar 

  86. Feng Y, Hung T, Zhang Y, Li B, Yang J, Shi Y. Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings. Energy. 2015;93:2018–29.

    Article  CAS  Google Scholar 

  87. Ahmadi MH, Ahmadi MA, Bayat R, Ashouri M, Feidt M. Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm. Energy Convers Manag. 2015;91:315–22.

    Article  Google Scholar 

  88. Xia XX, Wang ZQ, Zhou NJ, Hu YH, Zhang JP, Chen Y. Working fluid selection of dual-loop organic Rankine cycle using multi-objective optimization and improved grey relational analysis. Appl Therm Eng. 2020;171:115028.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AS was involved in optimization. NR contributed in software. FAB contributed to supervision, investigation, conceptualization, methodology, validation, writing-original draft, writing-review, and editing.

Corresponding author

Correspondence to Fateme Ahmadi Boyaghchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohbatloo, A., Rostami, N. & Ahmadi Boyaghchi, F. Exergoeconomic, water footprint-based exergoenvironmental impact and optimization of a new flash-binary geothermal power generation system using an improved grey relational method. J Therm Anal Calorim 147, 8411–8434 (2022). https://doi.org/10.1007/s10973-021-11128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11128-z

Keywords

Navigation