Skip to main content
Log in

Experimental study of natural convection heat transfer from horizontal cam tubes in a vertical array under constant heat flux

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, natural convection heat transfer from a single horizontal cam cross-section tube and a vertical array of three cam tubes under constant heat flux submerged in water is investigated, experimentally. The experiment is carried out for modified Rayleigh number range of \(6.5 \times 10^{8}\) to \(2.6 \times 10^{9}\), and a dimensionless tube spacing range of 1.5, 2.0, and 2.5. The effects of modified Rayleigh number, cam tube orientation, and dimensionless spacing on the heat transfer rate from the individual tube and tube array are studied. Based on the results, the effect of thermal plume on the rate of heat transfer from the second and third cam tubes in the vertical array is strongly dependent on the dimensionless spacing. Under fixed conditions, the mean Nusselt number of the single horizontal cam tube with upward facing orientation is higher than that of the downward facing and rightward facing orientations for all the modified Rayleigh numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Area (m2)

D eq :

Equivalent diameter (m)

h θ :

Local heat transfer coefficient (W m2 K1)

H :

Mean heat transfer coefficient (W m2 K1)

I :

Electrical current (A)

k :

Thermal conductivity (W m1 K1)

T :

Temperature (°C)

L :

Length of tube (m)

S :

Vertical center-to-center separation distance (m)

C :

Major axis (m)

g :

Gravitational acceleration (m s2)

Nu:

Mean Nusselt number

Nux :

Local Nusselt number of single tube

Nui :

Mean Nusselt number of the ith tube in array

Nua :

Mean Nusselt number of all tubes in array

Ra:

Rayleigh number

Ra* :

Modified Rayleigh number

N :

Number of tubes

Ni :

Ordinal number of the ith tube in array

V :

Voltage (V)

D :

Large diameter (m)

d :

Small diameter (m)

\(l\) :

Distance between centers (m)

t :

Thickness of tube (m)

P :

Circumferential length (m)

Q :

Thermal power (Watt)

x :

Distance for stagnation point (m

θ :

Angle about tube from bottom of tube (°)

α :

Thermal diffusivity (m2 s1)

β :

Coefficient of volumetric thermal expansion (K1)

ν :

Kinematic viscosity (m2 s1

b :

Undisturbed water

w :

Surface of tube

1,2:

Location in water tank

References

  1. Qiang Yu, Yuanwei Lu, Zhang C, Yuting Wu, Sunden B. Experimental and numerical study of natural convection in bottom-heated cylindrical cavity filled with molten salt nanofluids. J Therm Anal Calorim. 2020;141:1207–19. https://doi.org/10.1007/s10973-019-09112-9.

    Article  CAS  Google Scholar 

  2. Giwa SO, Sharifpur M, Ahmadi MH, Meyer JP. A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09832-3.

    Article  Google Scholar 

  3. Eckert ERG, Soehngen EE, Studies on heat transfer in laminar free convection with the Mach–Zehnder interferometer, AF Technical Report, 5747, USAF Air Material Command, Wright-Paterson Air Force Base, Ohio, 1948.

  4. Grafsrønningen S, Atle J. Natural convection heat transfer from two horizontal cylinders at high Rayleigh numbers. Int J Heat Mass Transf. 2012;55:5552–64.

    Article  Google Scholar 

  5. Grafsrønningen S, Atle J. Natural convection heat transfer from three vertically arranged horizontal cylinders with dissimilar separation distance at moderately high Rayleigh numbers. Int J Heat Mass Transf. 2013;57:519–27.

    Article  Google Scholar 

  6. Guan N, Zhigang L, Chengwu Z, Guilin J. Natural convection heat transfer on surfaces of copper micro-wires. Heat Mass Transf. 2014;50:275–84.

    Article  CAS  Google Scholar 

  7. Abdelatief MA, Zamel AA, Ahmed SA. Elliptic tube free convection augmentation: An experimental and ANN numerical approach. Int Commun Heat Mass Transf. 2019;108:104296.

    Article  Google Scholar 

  8. Kiwan S, Alwan H, Abdelal N. An experimental investigation of the natural convection heat transfer from a vertical cylinder using porous fins. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2020.115673.

    Article  Google Scholar 

  9. Chouikh R, Guizani A, Cafsi AEL, Maalej M, Belghith A. Experimental study of the natural convection flow around an array of heated horizontal cylinders. Renew Energy. 2000;21:65–78.

    Article  Google Scholar 

  10. Sadegh Sadeghipour M, Asheghi M. Free convection heat transfer from arrays of vertically separated horizontal cylinders at low Rayleigh numbers. Int J Heat Mass Transf. 1994;37(1):103–9.

    Article  Google Scholar 

  11. Ashjaee M, Yazdani S, Bigham S, Yousefi T. Experimental and numerical investigation on free convection from a horizontal cylinder located above an adiabatic surface. Heat Transf Eng. 2012;33(3):213–24.

    Article  CAS  Google Scholar 

  12. Unger S, et al. Experimental study of the natural convection heat transfer performance for finned oval tubes at different tube tilt angles. Exp Therm Fluid Sci. 2019. https://doi.org/10.1016/j.expthermflusci.2019.03.016.

    Article  Google Scholar 

  13. Jisheng L, Tarasuk JD. Local free convection around inclined cylinders in air: an interferometric study. Exp Therm Fluid Sci. 1992;5:235–42.

    Article  Google Scholar 

  14. He Z, Zhu J, Zhang J, Cheng C, Hu N. Natural convection heat transfer from a horizontal cylinder using holographic interferometry. Heat Trans Asian Res. 2018. https://doi.org/10.1002/htj.21371.

    Article  Google Scholar 

  15. Kitamura K, Mitsuishi A, Suzuki T, Kimura F. Fluid flow and heat transfer of natural convection induced around a vertical row of heated horizontal cylinders. Int J Heat Mass Transf. 2016;92:414–9.

    Article  Google Scholar 

  16. I. Tokura, H. Saito, K. Kishinami, K. Muramoto, An experimental study of free convection heat transfer from a horizontal cylinder in a vertical array set in free space between parallel walls.1983;105(1):102–7

  17. Persoons T, O’Gorman IM, Donoghue DB, Byrne G, Murray DB. Natural convection heat transfer and fluid dynamics for a pair of vertically aligned isothermal horizontal cylinders. Int J Heat Mass Transf. 2011;54:5163–72.

    Article  Google Scholar 

  18. Ali ME, Al-Ansary H. Experimental investigations on natural convection heat transfer around horizontal triangular ducts. Heat Transf Eng. 2010;31(5):350–61.

    Article  CAS  Google Scholar 

  19. Reymond O, Murray DB, O’Donovan TS. Natural convection heat transfer from two horizontal cylinders. Exp Therm Fluid Sci. 2008;32:1702–9.

    Article  CAS  Google Scholar 

  20. Quarmby A, Al-Fakhri AAM. Effect of finite length on forced convection heat transfer from cylinder. Int J Heat Transf. 1980;23:463–9.

    Article  Google Scholar 

  21. Atmane MA, Chan VSS, Murray DB. Natural convection around a horizontal heated cylinder: the effects of vertical confinement. Int J Heat Mass Transf. 2003;46(19):3661–72.

    Article  Google Scholar 

  22. Morgan VT. The overall convective heat transfer from smooth circular cylinder. In: Hartnett I, editor. Advances in heat transfer, vol. 11. New York: Academic Press; 1975. p. 199–264.

    Google Scholar 

  23. Churchill SW, Chu HHS. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int J Heat Mass Transf. 1975;18:1049–53.

    Article  Google Scholar 

  24. Ali M. Natural convection heat transfer from horizontal rectangular ducts. ASME J Heat Transf. 2007;129(9):1195–202.

    Article  CAS  Google Scholar 

  25. Kays WM, Crawford ME. Convection heat and mass transfer. 3rd ed. USA: McGraw-Hill; 1993.

    Google Scholar 

  26. Saitoh T, Sajiki T, Maruhara K. Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder. Int J Heat Mass Transf. 1993;36(5):1251–9.

    Article  CAS  Google Scholar 

  27. Badr HM. Laminar natural convection from an elliptic tube with different orientations. J Heat Transf. 1997;119(4):709–18.

    Article  Google Scholar 

  28. Elsherbiny SM, Teamah MA, Moussa AR, Natural convection heat transfer from an isothermal horizontal square cylinder. Alex Eng J 2017;56:181–7

  29. Gebhart B, Pera L, Schorr AW. Steady laminar natural convection plumes above a horizontal line heat source. Int J Heat Mass Transf. 1970;13:161–71.

    Article  Google Scholar 

  30. Javadpour A. An empirical study on heat transfer and friction factor of a pseudoplastic nanofluid under magnetic field. J Therm Anal Calorim. 2020;139:673–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ally Javadpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Uncertainly analysis

Appendix: Uncertainly analysis

The uncertainty in the local heat transfer coefficient was obtained using the method presented in Reference [30].

$$h_{\uptheta } = \frac{Q}{{\pi D_{{\text{h}}} L\left( {T_{{\text{b}}} - T_{{\text{s}}} } \right)}}f\left( {T_{{\text{s}}} ,T_{{\text{b}}} ,\frac{Q}{{A_{{\text{s}}} }}} \right) = f\left( {T_{{\text{s}}} ,T_{{\text{b}}} ,V,I,D_{{\text{h}}} ,L} \right)$$
$$w_{{\text{h}}} = f\left( {w_{{{\text{T}}_{{\text{s}}} }} ,w_{{{\text{T}}_{{\text{b}}} }} ,w_{{\text{V}}} ,w_{{\text{I}}} ,w_{{{\text{D}}_{{\text{h}}} }} ,w_{{\text{L}}} } \right)$$
$$w_{{\text{h}}} = \left[ {\left( {\frac{\delta h}{{\delta V}}w_{{\text{V}}} } \right)^{2} + \left( {\frac{\delta h}{{\delta I}}w_{{\text{I}}} } \right)^{2} + \left( {\frac{\delta h}{{\delta I}}w_{{{\text{D}}_{{\text{h}}} }} } \right)^{2} + \left( {\frac{\delta h}{{\delta I}}w_{{\text{L}}} } \right)^{2} + \left( {\frac{\delta h}{{\delta T_{s} }}w_{{{\text{T}}_{{\text{s}}} }} } \right)^{2} + \left( {\frac{\delta h}{{\delta T_{{\text{b}}} }}w_{{{\text{T}}_{{\text{b}}} }} } \right)^{2} } \right]^{\frac{1}{2}} \times 100$$
$$\begin{aligned} \frac{{w_{{\text{h}}} }}{h} & = \left[ {\left( {\frac{{w_{{\text{V}}} }}{V}} \right)^{2} + \left( {\frac{{w_{{\text{I}}} }}{I}} \right)^{2} + \left( {\frac{{w_{{{\text{D}}_{{\text{h}}} }} }}{{D_{{\text{h}}} }}} \right)^{2} + \left( {\frac{{w_{{\text{L}}} }}{L}} \right)^{2} + \left( {\frac{{w_{{{\text{T}}_{{\text{s}}} }} }}{{T_{{\text{s}}} - T_{{\text{b}}} }}} \right)^{2} + \left( {\frac{{w_{{{\text{T}}_{{\text{b}}} }} }}{{T_{{\text{s}}} - T_{{\text{b}}} }}} \right)^{2} } \right]^{\frac{1}{2}} \\ & = \left[ {\left( {0.0090^{2} } \right) + \left( {0.0735^{2} } \right) + \left( {0.0209^{2} } \right) + \left( {0.05^{2} } \right) + \left( {0.0148^{2} } \right) + \left( {0.0148^{2} } \right)} \right]^{\frac{1}{2}} = 9.3\% \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadpour, A., Najafi, M. & Lowrey, S. Experimental study of natural convection heat transfer from horizontal cam tubes in a vertical array under constant heat flux. J Therm Anal Calorim 147, 8569–8577 (2022). https://doi.org/10.1007/s10973-021-11119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11119-0

Keywords

Navigation