Skip to main content
Log in

Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of NixCo1−x Fe2O4 (x = 0, 0.05, and 1) ferrites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

NixCo1−xFe2O4 (x = 0, 0.5, and 1) spinel nanoparticles (NPs) have been prepared using the ceramic method and Ni0.5Co0.5Fe2O4 using green, microwave, and sol–gel routes. The as-prepared materials were characterized by XRD, FT-IR, SEM TEM, and N2 adsorption/desorption techniques. The catalytic activity, thermal stability, and kinetic parameters of the effect of synthesized materials upon thermal decomposition of ammonium perchlorate (AP) were studied through differential scanning calorimetry (DSC) and thermogravimetric techniques (TG). The addition of 2 mass% of nanosized ferrites to AP shifted the thermal degradation temperature of AP to lower temperatures. The catalytic activity for AP thermal degradation followed the order: NiCoF-gl > NiCoF-gr > NiCoF-mic > NiCoF-cer > NiF > CoF. The kinetic parameters for the ferrite-catalyzed reaction, using the isoconversional methods for NiCoF-gl, showed a decrease in the activation energy and preexponential factor of ammonium perchlorate thermal dissociation compared with the uncatalyzed one. The thermokinetic parameters for the catalytic decomposition process were determined and a mechanism was suggested for the kinetic reaction. The DSC results showed that the decomposition temperatures of AP decreased with the addition of the ferrites. The heat releases of the AP/ferrite mixtures were 0.82, 0.89, 0.91, 0.98, 1.04 and 1.23 kJ g−1 of AP, for CoF, NiF, NiCoF-cer, NiCoF-gr, NiCoF-mic, and NiCoF-gl, respectively, compared to 0.72 kJ g−1 for neat AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Campos EA, Pinto DVBS, Oliveira JLS de, Mattos EdaC, Dutra RdeCL. Synthesis, characterization and applications of iron oxide nanoparticles. J Aerosp Technol Manage. 2015;7: 267–76.

  2. Yadav N, Srivastava PK, Varma M. Recent advances in catalytic combustion of AP-based composite solid propellants. J Defence Technol. 2020. https://doi.org/10.1016/j.dt.2020.06.007.

    Article  Google Scholar 

  3. Rao DCK, Yadav N, Joshi PC. Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellant. J Defence Technol. 2016;12:297–304.

    Article  Google Scholar 

  4. Brewster MQ, Mullen JC. Burning-rate behavior in aluminized wide-distribution AP composite propellants. Combust Explos Shock Waves. 2011;47:200–8.

    Article  Google Scholar 

  5. Srivastava P, Dubey R, Kapoor PS, Singh G. Synthesis, characterization and catalytic effect of nimetallic nanocrystals on the thermal decomposition of ammonium perchlorate. Indian J Chem. 2010;49A:1339–44.

    CAS  Google Scholar 

  6. Sinditskii VP, Egorshev VY. Combustion mechanism and kinetics of thermal decomposition of ammonium chlorate and nitrite: combustion mechanism and kinetics of thermal decomposition. Centr Eur J Energ Mater. 2010;7:61–75.

    CAS  Google Scholar 

  7. Balzer JE, Siviour CR, Walley SM, Proud WG, Field JE. Behaviour of ammonium perchlorate-based propellants and a polymer-bonded explosive under impact loading. J Proc R Soc A Math Phys Eng Sci. 2004;460:781–806.

    Article  CAS  Google Scholar 

  8. Chaturvedi S, Dave PN. Solid propellants: AP/HTPB composite propellants. Arab J Chem. 2019;12:2061–8.

    Article  CAS  Google Scholar 

  9. Xiao X, Peng B, Cai L, Zhang X, Liu S, Wang Y. The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method. J Sci Rep. 2018. https://doi.org/10.1038/s41598-018-26022-2.

    Article  PubMed  Google Scholar 

  10. Han A, Liao J, Ye M, Li Y, Peng X. Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of Ammonium perchlorate. Chin J Chem Eng. 2011;19(6):1047–51.

    Article  CAS  Google Scholar 

  11. Li G, Bai W. Synthesis of hierarchical flower-likeCo3O4superstructure and its excellent catalytic property for ammonium perchlorate decomposition. J Chem Phys. 2018;506:45–51.

    CAS  Google Scholar 

  12. Chen L, Li L, Li G. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloy Compd. 2008;464(1):532–6.

    Article  CAS  Google Scholar 

  13. Wang Y, Zhu J, Yang X, Lu L, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2005;437(1):106–9.

    Article  CAS  Google Scholar 

  14. Zhang Y, Ma M, Zhang X, Wang B, Liu R. Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes. J Alloys Compd. 2014;590:373–9.

    Article  CAS  Google Scholar 

  15. Zhang Y, Liu X, Nie J, Yu L, Zhong Y, Huang C. Improve the catalytic activity of a-Fe2O3 particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface. J Solid State Chem. 2011;184(2):387–90.

    Article  CAS  Google Scholar 

  16. Juibari NM, Eslami A. Investigation of catalytic activity of ZnAl2O4 and ZnMn2O4 nanoparticles in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2017;128(1):115–24.

    Article  CAS  Google Scholar 

  17. Aijun H, Juanjuan L, Mingquan Y, Yan L, Xinhua P. Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate. Chin J Chem Eng. 2011;19(6):1047–51.

    Article  Google Scholar 

  18. Hosseini SG, Abazari R, Gavi A. Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. J Solid State Sci. 2014;37:72–9.

    Article  CAS  Google Scholar 

  19. Jacobs PWM, Whitehead HM. Decomposition and Combustion of ammonium perchlorate. J Chem Rev. 1969;69:551–90.

    Article  CAS  Google Scholar 

  20. Cui B, Lin H, Li JB, Li X, Yang J, Tao J. Core-ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. J Adv Funct Mater. 2008;18:1440–7.

    Article  CAS  Google Scholar 

  21. Singh G, Kapoor IPS, Dubey R, Srivastava P. Preparation, characterization and catalytic behavior of CdFe2O4 and Cd nanocrystals on AP. HTPB and composite solid propellants, Part:79. Thermo-chim Acta. 2015;1–2(511):112–8.

    Google Scholar 

  22. Wei SH, Zhang SB. First-principles study of cation distribution in eighteen closed-shell AIIB2IIIO4 and AIVB2IIO4 spinel oxides. J Phys Rev B. 2001;63(4):045112.

    Article  Google Scholar 

  23. Jacobs JP, Maltha A, Reintjes JGH, Drimal J, Ponec V, Brongersma HH. The surface of catalytically active spinels. J Catal. 1994;147(1):294–300.

    Article  CAS  Google Scholar 

  24. Vozniuk O, Tabanelli T, Tanchoux N, Millet Jean-Marc M, Albonetti S, Di Renzo F, Cavani F. Mixed-oxide catalysts with spinel structure for the valorization of biomass: the chemical-loop reforming of bioethanol. Catalysts. 2018;8:332. https://doi.org/10.3390/catal8080332.

    Article  CAS  Google Scholar 

  25. Xiao X, Peng B, Cai L, Zhang X, Liu S, Wang Y. The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method. Sci Rep. 2018;8:7571.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Modanlou N, Tarighi S. MnC2O4 nanoparticles with excellent catalytic activity in thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2018;133:1317–26.

    Article  Google Scholar 

  27. Chen T, Ping D, Jiang W, Liu J, Hao G, Gao H, Xiao L, Ke X, Zhao F, Xuan C. A facile one-pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate. R Soc Chem Adv. 2016;6:83838–47.

    CAS  Google Scholar 

  28. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2012;217:330–9.

    Article  CAS  Google Scholar 

  29. Gheshlaghi EA, Shaabani B, Khodayari A, Kalandaragh YA, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2012;217:330–9.

    Article  Google Scholar 

  30. Singh G, Kapoor IPS, Dubey S, Siril PF. Preparation characterization and catalytic activity of transition metal oxide nanocrystals. J Sci Con Proc. 2008;1(7):11–7.

    Google Scholar 

  31. Zhang X, Zheng J, Fangb H, Zhang Y, Bai S, He G, Li K. Catalytic decomposition and crack resistance of composite energetic material synthesized by recrystallizing with graphene oxide. Compos A Appl Sci Manuf. 2009;118:90–8.

    Article  Google Scholar 

  32. Chaturvedi S, Dave PN, Patel NN. Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys. J Appl Nano Sci. 2015;5:93–8.

    CAS  Google Scholar 

  33. Joshi SS, Paul PR, Krishnamurthy VN. Thermal decomposition of ammonium perchlorate in the presence of nano sized ferric oxide. J Defence Sci. 2008;58(6):721–7.

    Article  CAS  Google Scholar 

  34. Lucas E, Decker S, Khaleel A, Seitz A, Futlz S, Ponce A, Li W, Carnes C, Klabunde KJ. Nanocrystalline metal oxides as unique chemical reagents/sorbents. Chem A Eur J. 2001;7(12):2505–10.

    Article  CAS  Google Scholar 

  35. Venkatachalam V, Alsalme A, Alghamdi A, Jayavel R. Hexagonal-like NiCo2O4 nanostructure based high-performance supercapacitor electrodes. J Ionics. 2017;23:977–84.

    Article  CAS  Google Scholar 

  36. Velmurugan M, Chen SM. Synthesis and characterization of porous MnCo2O4 for electrochemical determination of cadmium ions in water samples. J Sci Rep. 2017;7:66. https://doi.org/10.1038/s41598-017-00748-x.

    Article  CAS  Google Scholar 

  37. Košak A, Makovec D, Drofenik M. The preparation of MnZn-ferrite nanoparticles in a water/CTAB, 1-butanol/1-hexanol reverse microemulsion. J Phys Status Solidi C. 2004;1(12):3521–4.

    Article  Google Scholar 

  38. Khairy M, El-Shaarawy MG, Mousa MA. Characterization and super-capacitive properties of nanocrystalline copper ferrite prepared via green and chemical methods. J Mater Sci Eng . 2021;263:114812.

    Article  CAS  Google Scholar 

  39. Naghikhani R, Nabiyouni G, Ghanbari D. Simple and green synthesis of CuFe2O4–CuO nanocomposite using some natural extracts: photo-degradation and magnetic study of nanoparticles. J Mater Sci Mater Electron. 2018;29:4689–703.

    Article  CAS  Google Scholar 

  40. Jalajerdi R, Ghanbari D. Microwave synthesis and magnetic investigation of CuFe2O4 nanoparticles and poly styrene-carbon nanotubes composites. J Nanostruct. 2016;26:278–84.

    Google Scholar 

  41. Costa AF, Pimentel PM, Aquino FM, Melo DMA, Melo MAF, Santos IMG. Gelatin synthesis of CuFe2O4 and CuFeCrO4 ceramic pigments. J Mater Lett. 2013;112:58–61.

    Article  CAS  Google Scholar 

  42. Khawam A, Flanagan DR. Solid-state kinetic models: Basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  PubMed  Google Scholar 

  43. Casal MD, Marbán G. Combined kinetic analysis of solid-state reactions: the integral method (ICKA). Int J Chem Kin. 2020. https://doi.org/10.1002/kin.21416.

    Article  Google Scholar 

  44. Ninan KN, Krishnan K, Krishnamurthy VN, Ir ley J. Kinetics and mechanism of thermal decomposition of in situ generated calcium carbonate. J Therm Anal. 1991;37:1533–43.

    Article  CAS  Google Scholar 

  45. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolys. 2008;81:253–62.

    Article  CAS  Google Scholar 

  46. Atanassov A, Genieva S, Vlaev L. Study on the thermo oxidative degradation kinetics of tetrafluoroethylene-ethylene copolymer filled with rice husks ash. J Polym Plast Technol Eng. 2010;49:541–54.

    Article  CAS  Google Scholar 

  47. Khawam A, Flanagan DR. Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Sci. 2006;95:472–98.

    Article  CAS  PubMed  Google Scholar 

  48. Ravi P, Vargeese AA, Tewari SP. Isoconversional kinetic analysis of decomposition of nitropyrazoles. Thermochim Acta. 2012;550:83–9.

    Article  CAS  Google Scholar 

  49. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  50. Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  51. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Them Analy. 1970;2:301–24.

    Article  CAS  Google Scholar 

  52. Janković B, Smičiklas I. The non-isothermal combustion process of hydrogen peroxide treated animal bones. Kinetic analysis. Thermochim Acta. 2011;521:130–8.

    Article  Google Scholar 

  53. Dhyani V, Kumar J, Bhaskar T. Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. J Bioresource Technol. 2017;45:1122–9.

    Article  Google Scholar 

  54. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry application to a phenolic plastic. J Polym Sci C Polym Symp. 1964;6:66. https://doi.org/10.1002/polc.5070060121.

    Article  Google Scholar 

  55. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  56. Valanciene E, Miknius L, Pedisius N. The influence of zeolite catalyst on kinetics and thermodynamics of polypropylene waste thermal degradation. J Therm Anal Calorim. 2016;124:341–54.

    Article  CAS  Google Scholar 

  57. Genieva S, Vlaev L, Atanassov A. Study of the thermooxidative degradation kinetics of poly (tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99(2):551–61.

    Article  CAS  Google Scholar 

  58. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  59. Ghuge NS, Mandal D. Synthesis of LiDyO2 by solid-state reaction process and study of reaction kinetics by using TG-DTA and XRD techniques. Indian Chem Eng. 2017;59(2):101–16.

    Article  CAS  Google Scholar 

  60. Khairy M, Bayoumy WA, Selima SS, Mousa MA. Studies on characterization, magnetic and electrochemical properties of nano-size pure and mixed ternary transition metal ferrites prepared by the autocombustion method. J Mater Res. 2020. https://doi.org/10.1557/jmr.2020.200.

    Article  Google Scholar 

  61. Islam N, Ghosh TB, Chopra KL, Acharya HN. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. J Thin Solid Films. 1996;280:20–5.

    Article  CAS  Google Scholar 

  62. Srinivasan TT, Srivastava CM, Venkataramani N, Patni MJ. Infrared absorption in spinel ferrites. Bull Mater Sci. 1984;6:1063–7.

    Article  CAS  Google Scholar 

  63. Patil RP, Deleka SD, Mane DR, Hankare PP. Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite. J Results Phys. 2013;3:129–33.

    Article  Google Scholar 

  64. Şabikoğlu I, Paral L, Malina O, Novak P, Kaslik J, Tucek J, Pechousek J, Navarik J, Schneeweiss O. The effect of neodymium substitution on the structural and magnetic properties of nickel ferrite. Prog Nat Sci Mater Int. 2015;25:215–21.

    Article  Google Scholar 

  65. Kumar H, Singh JP, Srivastava RC, Negi P, Agrawal HM, Asokan K. FTIR and electrical study of dysprosium doped cobalt ferrite nanoparticles. J Nano Sci. 2014. https://doi.org/10.1155/2014/862415.

    Article  Google Scholar 

  66. Pradeep A, Priyadharsini P, Chandrasekaran G. Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J Magn Magn Mater. 2008;320(21):2774–9.

    Article  CAS  Google Scholar 

  67. Compos EA, Fernandes MTC, Kawachi EY, Oliveira JIS, Dutra RCL. Chemical and textural characterization of iron oxide nanoparticles and their effect on the thermal decomposition of ammonium perchlorate. J Propell Explor Pyrotechnol. 2015;40(6):860–6.

    Article  Google Scholar 

  68. Juibari MN, Tarighi S. MnCo2O4 nanoparticles with excellent catalytic activity in thermal decomposition of ammonium perchlorate: green synthesis and kinetic study. J Therm Anal Calorim. 2018;133:1317–26.

    Article  CAS  Google Scholar 

  69. Shim HM, Lee EA, Kim JK, Kim HS, Koo KK. Formation of tungsten/ammonium perchlorate composites and their reaction kinetics. Cent Eur J Energ Mater. 2015;12:703–22.

    CAS  Google Scholar 

  70. Ding Y, Ezekoye OA, Lu S, Wang C, Zhou R. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. J Energy Convers Manag. 2017;132(15):102–9.

    Article  CAS  Google Scholar 

  71. Joshi SS, Paul PR, Krishnamurthy VN. Thermal decomposition of ammonium perchlorate in the presence of nanosized ferric oxide. J Defence Sci. 2008;58:721–7. https://doi.org/10.14429/dsj.58.1699.

    Article  CAS  Google Scholar 

  72. Jacobs PMW, Russell-Jones A. On the mechanism of the decomposition of ammonium perchlorate. J Aerosp Res Cent. 2012. https://doi.org/10.2514/3.4085.

    Article  Google Scholar 

  73. Essel JT, Nelson AP, Smilowitz LB, Henson BF, Merriman LR, Turnbaugh D, Gray C, Shermer KB. Investigating the effect of chemical ingredient modifications on the slow cook-off violence of ammonium perchlorate solid propellants on the laboratory scale. J Energ Mater. 2020;38:127–41.

    Article  CAS  Google Scholar 

  74. Wang Y, Song X, Li F. Thermal behavior and decomposition mechanism of ammonium perchlorate and ammonium nitrate in the presence of nanometer triaminoguanidine nitrate. J ACS Omega. 2019;4:214–25.

    Article  CAS  Google Scholar 

  75. Xiao X, Zhang Z, Cai L, Li Y, Yan Z, Wang Y. The excellent catalytic activity for thermal decomposition of ammonium perchlorate using porous CuCo2O4 synthesized by template-free solution combustion method. J Alloys Compd. 2019;797:548–57.

    Article  CAS  Google Scholar 

  76. Turmanova S, Genieva S, Vlaev L. Kinetics of nonisothermal degradation of some polymer composites: change of entropy at the formation of the activated complex from the reagents. J Thermodyn. 2011;66:1–10. https://doi.org/10.1155/2011/605712.

    Article  CAS  Google Scholar 

  77. Vara A, Dave Chaturvedi S. The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate. J Defence Technol. 2019;15:629–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mousa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammar, E.A., Gad, E.A.M. & Mousa, M.A. Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of NixCo1−x Fe2O4 (x = 0, 0.05, and 1) ferrites. J Therm Anal Calorim 147, 8119–8135 (2022). https://doi.org/10.1007/s10973-021-11112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11112-7

Keywords

Navigation