Skip to main content
Log in

Effect of oxygen concentration and external radiation on the thermal decomposition and combustion characteristics of electric wire

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the thermal decomposition and combustion characteristics of electric wire under different oxygen concentrations and external radiations. Fire propagation apparatus was used, and the thermal decomposition, limit oxygen concentration, ignition time, mass loss rate, and heat release rate are discussed. It was found that under nitrogen atmosphere, higher external heat flux promoted the thermal decomposition. The mass loss rate of decomposition exhibited a linear behavior versus radiant heat flux. The limit oxygen concentration was linearly reduced with increasing external heat flux. For the combustion process, the ignition time decreased while the mass loss rate increased with the increasing oxygen concentration and external heat flux. The wire sample used in this study is proved to be thermally thin and the increase rate of the mass loss rate reduced under high external heat flux. The peak heat release rate increases with oxygen concentration under low external heat flux. While under high external heat flux, the peak heat release rate first increaseed and then decreaseed with oxygen concentration due to the effect of increasing heat blockage effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huang X, Nakamura Y. A review of fundamental combustion phenomena in wire fires. Fire Technol. 2020;56(1):315–60.

    Article  Google Scholar 

  2. Rhodes BT, Quintiere JG. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Saf J. 1996;26(3):221–40.

    Article  CAS  Google Scholar 

  3. Shen R, Hatanaka LC, Ahmed L, Agnew RJ, Mannan MS, Wang Q. Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites. J Therm Anal Calorim. 2017;128(3):1443–51.

    Article  CAS  Google Scholar 

  4. Wei R, Huang S, Huang Q, Ouyang D, Chen Q, Yuen R, Wang J. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter. J Therm Anal Calorim. 2018;134(3):1471–80.

    Article  CAS  Google Scholar 

  5. Chen R, Xu X, Zhang Y, Lu S, Lo S. Characterization of ignition and combustion characteristics of phenolic fiber-reinforced plastic with different thicknesses. J Therm Anal Calorim. 2020;140(2):645–55.

    Article  CAS  Google Scholar 

  6. Elliot PJ, Whiteley RH. A cone calorimeter test for the measurement of flammability properties of insulated wire. Polym Degrad Stab. 1999;64(3):577–84.

    Article  CAS  Google Scholar 

  7. Wang Z, Wang J. An experimental study on the fire characteristics of new and aged building wires using a cone calorimeter. J Therm Anal Calorim. 2019;135(6):3115–22.

    Article  CAS  Google Scholar 

  8. Meinier R, Sonnier R, Zavaleta P, Suard S, Ferry L. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J Hazard Mater. 2018;342:306–16.

    Article  CAS  Google Scholar 

  9. Gong T, Xie Q, Huang X. Fire behaviors of flame-retardant cables part I: decomposition, swelling and spontaneous ignition. Fire Saf J. 2018;95:113–21.

    Article  CAS  Google Scholar 

  10. Courty L, Garo JP. External heating of electrical cables and auto-ignition investigation. J Hazard Mater. 2017;321:528–36.

    Article  CAS  Google Scholar 

  11. Passalacqua R, Cortes P, Taylor N, Beltran D, Zavaleta P, Charbaut S. Experimental characterisation of ITER electric cables in postulated fire scenarios. Fusion Eng Des. 2013;88(9–10):2650–4.

    Article  CAS  Google Scholar 

  12. Fang J, He XZ, Li KY, Wang JW, Zhang YM. Transition condition and control mechanism of sub-atmospheric flame spread rate over horizontal thin paper sample. Combust Flame. 2018;188:90–3.

    Article  CAS  Google Scholar 

  13. Zarzecki M, Quintiere JG, Lyon RE, Rossmann T, Diez FJ. The effect of pressure and oxygen concentration on the combustion of PMMA. Combust Flame. 2013;160(8):1519–30.

    Article  CAS  Google Scholar 

  14. Osorio AF, Mizutani K, Fernandez-Pello C, Fujita O. Microgravity flammability limits of ETFE insulated wires exposed to external radiation. Proc Combust Inst. 2015;35(3):2683–9.

    Article  CAS  Google Scholar 

  15. Miyamoto K, Huang X, Hashimoto N, Fujita O, Fernandez-Pello C. Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation. Fire Saf J. 2016;86:32–40.

    Article  CAS  Google Scholar 

  16. Hu L, Lu Y, Yoshioka K, Zhang Y, Fernandez-Pello C, Chung SH, Fujita O. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal-and micro-gravity. Proc Combust Inst. 2017;36(2):3045–53.

    Article  CAS  Google Scholar 

  17. Kobayashi Y, Konno Y, Huang X, Nakaya S, Tsue M, Hashimoto N, Fujita O, Fernandez-Pello C. Effect of insulation melting and dripping on opposed flame spread over laboratory simulated electrical wires. Fire Saf J. 2018;95:1–10.

    Article  CAS  Google Scholar 

  18. Konno Y, Hashimoto N, Fujita O. Downward flame spreading over electric wire under various oxygen concentrations. Proc Combust Inst. 2019;37(3):3817–24.

    Article  CAS  Google Scholar 

  19. Tewarson A, Pion RF. Flammability of plastics—I Burning intensity. Combust Flame. 1976;26:85–103.

    Article  CAS  Google Scholar 

  20. Zhang X, Zhao Y, Zhang T, Ding Z, Li C, Lu S. Characterization of thermal decomposition and combustion for commercial flame-retardant rubber floor cloth in TG–FTIR and FPA. J Therm Anal Calorim. 2019;135(6):3453–61.

    Article  CAS  Google Scholar 

  21. Hayashi J, Nakahara T, Kusakabe K, Morooka S. Pyrolysis of polypropylene in the presence of oxygen. Fuel Process Technol. 1998;55(3):265–75.

    Article  CAS  Google Scholar 

  22. Quintiere JG. A semi-quantitative model for the burning rate of solid materials. Fire Saf J. 1992;1:3–25.

    Google Scholar 

  23. Mikkola E, Wichman IS. On the thermal ignition of combustible materials. Fire Mater. 1989;14(3):87–96.

    Article  CAS  Google Scholar 

  24. Alibert D, Coutin M, Mense M, Pizzo Y, Porterie B. Effect of oxygen concentration on the combustion of horizontally-oriented slabs of PMMA. Fire Saf J. 2017;91:182–90.

    Article  CAS  Google Scholar 

  25. Jiang F, De Ris JL, Qi H, Khan MM. Radiation blockage in small scale PMMA combustion. Proc Combust Inst. 2011;33(2):2657–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Class General Financial Grant from the China Postdoctoral Science Foundation [No. 2019M653876XB] and Scientific Research of Shaanxi Provincial Department of Education [No. 20JK0769].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Zhao Yanli, Zhang Xuelin, Luo Shengfeng and Zhang Xiaoliang. The first draft of the manuscript was written by Zhao Yanli and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhao Yanli.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanli, Z., Xuelin, Z., Shengfeng, L. et al. Effect of oxygen concentration and external radiation on the thermal decomposition and combustion characteristics of electric wire. J Therm Anal Calorim 147, 7775–7784 (2022). https://doi.org/10.1007/s10973-021-11059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11059-9

Keywords

Navigation