Skip to main content
Log in

Effects of post-treatment on crystallization behavior of glass fiber-reinforced polyamide 66 composite with red phosphorus flame retardant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Glass fiber-reinforced polyamide 66 composite with red phosphorus flame retardant (PA66-GF FR (RP)) has excellent strength and flame retardant properties, and is widely used in electrical engineering. In order to further improve the mechanical and crystallization properties of PA66 composites, post-treatment of the composites is necessary. In this paper, the crystallization behavior and melting behavior of PA66-GF25 FR (RP) untreated and treated by three different post-treatment routes were studied by differential scanning calorimetry. The Jeziorny-modified Avrami’s model, Ozawa’s model, and Mo’s model were applied to analysis the non-isothermal kinetics, and Kissinger theory was used to calculate the activation energies of non-isothermal crystallization. The results showed that the Mo’s model can successfully describe the non-isothermal crystallization kinetics of PA66-GF25 FR (RP) untreated and treated by three different post-treatment routes, while the other two models are not applicable. In addition, it is identified that post-treatment processes can improve the crystallinity and crystallization rates of PA66-GF25 FR (RP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nirmala R, Navamathavan R, Kim HY, et al. Electrical properties of conductive nylon66/graphene oxide composite nanofibers. J Nanosci Nanotechnol. 2015;15(8):5718–22. https://doi.org/10.1166/jnn.2015.10273.

    Article  CAS  PubMed  Google Scholar 

  2. Huang XH, Li B, Shi BL, et al. Investigation on interfacial interaction of flame retarded and glass fiber reinforced PA66 composites by IGC/DSC/SEM. Polymer. 2008;49(4):1049–55. https://doi.org/10.1016/j.polymer.2007.12.037.

    Article  CAS  Google Scholar 

  3. Karatas MA, Gokkaya H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def Technol. 2018;14(4):54–62. https://doi.org/10.1016/j.dt.2018.02.001.

    Article  Google Scholar 

  4. Mouhmid B, Imad A, Benseddiq N, et al. A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation. Polym Test. 2006;25(4):544–52. https://doi.org/10.1016/j.polymertesting.2006.03.008.

    Article  CAS  Google Scholar 

  5. Lee CS, Kim HJ, Amanov A, et al. Investigation on very high cycle fatigue of PA66-GF30 GFRP based on fiber orientation. Composites Sci Technol. 2019;180:94–100. https://doi.org/10.1016/j.compscitech.2019.05.021.

    Article  CAS  Google Scholar 

  6. You YL, Liu CM, Li DX, et al. Tribological and flame retardant modification of polyamide-6 composite. J Cent South Univ. 2019;26(1):88–97. https://doi.org/10.1007/s11771-019-3984-z.

    Article  CAS  Google Scholar 

  7. Jou WS, Chen KN, Chao DY, et al. Flame retardant and dielectric properties of glass fibre reinforced nylon-66 filled with red phosphorous. Polym Degrad Stabil. 2001;74(2):239–45. https://doi.org/10.1016/S0141-3910(01)00109-4.

    Article  CAS  Google Scholar 

  8. Liu Y, Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polym Degrad Stabil. 2006;91(12):3103–9. https://doi.org/10.1016/j.polymdegradstab.2006.07.026.

    Article  CAS  Google Scholar 

  9. Adriano Damiani R, Fiori J, Silvano JDR, et al. Influence of the injection molding process on the mechanical properties of (PA6/GF/MMT) nanocomposite. Polym Composite. 2015;36(2):237–44. https://doi.org/10.1002/pc.22935.

    Article  CAS  Google Scholar 

  10. Tao YL. Main methods for post-treatment of injection molding products. Plastic manufacturing. 2012;07:68–72.

    Google Scholar 

  11. Xie S, Zhang S, Liu H, et al. Effects of processing history and annealing on polymorphic structure of nylon-6/montmorillonite nanocomposites. Polymer. 2005;46(14):5417–27.

    Article  CAS  Google Scholar 

  12. Lu YL, Zhang Y, Zhang GB, et al. Influence of thermal processing on the perfection of crystals in polyamide 66 and polyamide 66/clay nanocomposites. Polymer. 2004;45(26):8999–9009.

    Article  CAS  Google Scholar 

  13. Zhang KX, Wang QK. Research on heat treatment and application of nylon-6 structural products. Appl Eng Plast. 1995;01:23–8.

    Google Scholar 

  14. Meng Q, Gu Y, Luo L, et al. Annealing effect on crystalline structure and mechanical properties in long glass fiber reinforced polyamide 66. J Appl Polym Sci. 2017. https://doi.org/10.1002/app.44832.

    Article  Google Scholar 

  15. Zhang X, Li YB, Zuo Y, et al. Effects of processing technology on crystallization behavior and mechanical properties of n-HA/PA66 composites. J Compos Mater. 2007;03:76–81.

    Google Scholar 

  16. Corentin H, Peter D, Pierre-Yves LeGac, et al. Influence of water on the short and long term mechanical behaviour of polyamide 6 (nylon) fibres and yarns. Multiscale Multidiscip Model Experiments Des. 2018;1(4):317–27. https://doi.org/10.1007/s41939-018-0036-6.

    Article  Google Scholar 

  17. Liu JP, Mo ZS. Crystallization kinetics of polymers. Polym bull. 1991;04:9–17.

    Google Scholar 

  18. Wu BZ, Gong Y, Yang GS. Non-isothermal crystallization of polyamide 6 matrix in all-polyamide composites: crystallization kinetic, melting behavior, and crystal morphology. J Mater Sci. 2011;46(15):5184–91. https://doi.org/10.1007/s10853-011-5452-5.

    Article  CAS  Google Scholar 

  19. Mo ZS. A method for the non-isothermal crystallization kinetics of polymers. Acta Polym Sin. 2008;07:26–31. https://doi.org/10.1002/pc.22935.

    Article  CAS  Google Scholar 

  20. Frihi D, Layachi A, Gherib S, et al. Crystallization of glass-fiber-reinforced polyamide 66 composites: influence of glass-fiber content and cooling rate. Composites Sci Technol. 2016;130:70–7. https://doi.org/10.1016/j.compscitech.2016.05.007.

    Article  CAS  Google Scholar 

  21. Sun HF, Yang XJ, Wei K, et al. Non-isothermal crystallization kinetics of continuous glass fiber-reinforced poly (ether ether ketone) composites. J Therm Anal Calorim. 2019;138(1):369–78. https://doi.org/10.1007/s10973-019-08245-1.

    Article  CAS  Google Scholar 

  22. Shan GF, Yang W, Tang XG, et al. Non-isothermal crystallization kinetics of PA6. Synth Resins Plast. 2010;27(6):53–6. https://doi.org/10.1177/096739110701500706.

    Article  CAS  Google Scholar 

  23. Mu B, Wang Q, Wang H, et al. Nonisothermal crystallization kinetics of nylon 66/montmorillonite nanocomposites. J Macromol Sci Part B. 2007;46(6):1093–104. https://doi.org/10.1080/00222340902959420.

    Article  CAS  Google Scholar 

  24. Layachi A, Frihi D, Satha H, et al. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. J Therm Anal Calorim. 2016;124(3):1309–29. https://doi.org/10.1007/s10973-016-5286-0.

    Article  CAS  Google Scholar 

  25. Geng T, Guo YC, Duan RY, et al. Theory and research progress of warping deformation of injection parts. Henan Sci Technol. 2013;21:57–60.

    Google Scholar 

  26. Zuo DP, Zhang YH, Rui YL. Study on warp deformation of glass fiber reinforced PA66 products. Appl Eng Plast. 2005;33(12):23–5.

    CAS  Google Scholar 

  27. Cao HS, Zhao ZZ. Plastic forming process and mold design. Beijing: China machine press; 1993. p. 392–4.

    Google Scholar 

  28. Yang LX, Wang JH, Liu JH. Non-isothermal kinetics of in-situ composite flame retardant nylon 6. Synth Fiber Ind. 2009;032(001):8–11.

    CAS  Google Scholar 

  29. Hoffman JD. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38(13):3151–212. https://doi.org/10.1016/S0032-3861(97)00071-2.

    Article  CAS  Google Scholar 

  30. Avrami M. Kinetics of phase change I General Theory. J Chem Phys. 1939;7(12):1103–12. https://doi.org/10.1063/1.1750380.

    Article  CAS  Google Scholar 

  31. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24. https://doi.org/10.1063/1.1750631.

    Article  CAS  Google Scholar 

  32. Avrami M. Kinetics of phase change. III granulation, phase change, and microstructure. J Chem Phys. 1941;9(2):177–84. https://doi.org/10.1063/1.1750872.

    Article  CAS  Google Scholar 

  33. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer. 1978;19:1142–4. https://doi.org/10.1515/polyeng-2013-0250.

    Article  CAS  Google Scholar 

  34. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.

    Article  CAS  Google Scholar 

  35. Liu T, Mo Z, Wang S, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37(3):568–75. https://doi.org/10.1002/pen.11700.

    Article  CAS  Google Scholar 

  36. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21. https://doi.org/10.6028/jres.057.026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51705295, 51778351), and Shandong University of Science and Technology Research Fund of China (2018 TDJH101), University QingChuang science and technology plan of Shandong (2019KJB015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumei Lou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, S., Zhang, H., Liu, F. et al. Effects of post-treatment on crystallization behavior of glass fiber-reinforced polyamide 66 composite with red phosphorus flame retardant. J Therm Anal Calorim 147, 7229–7242 (2022). https://doi.org/10.1007/s10973-021-11033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11033-5

Keywords

Navigation