Skip to main content
Log in

Thermal properties of clay containing polymeric reinforcement as an eco-friendly bio-insulation composite for buildings

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polymer/clay-based composites were prepared via solution intercalation method using natural clay and poly (ethylene) glycol (PEG4000) as organic dispersed phase. The present work consists of studying the effect of PEG content on the hybrids surface morphology, thermal stability and thermophysical properties. On the other hand, the TGA data and the measured thermophysical properties are, respectively, fitted with a logistic-like laws and virial expansions for different polymer contents. The results showed that the experimental data agree with the proposed theoretical models. Furthermore, the incorporation of the PEG chains into the clay matrix improves both the thermal stability and thermal characteristics of the raw clay. The thermophysical properties data showed that the elaborated hybrid acts as good thermal insulator for polymer contents higher than \(2.5\%\). Finally, the resulting clay-based composite showed not only interesting characteristics in terms of insulation, but also satisfies both economic and environmental requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen GQ, Wu XD, Guo J, Meng J, Li C, Global overview for energy use of the world economy: Household-consumption-based accounting based on the world input-output database (WIOD). Energy Econ. 2019; 81: 835–47.

    Article  Google Scholar 

  2. Pedroso M, Flores-Colen I, Silvestre JD, Gomes MG, Silva L, Sequeira P, De Brito J (2020) Characterisation of a multilayer external wall thermal insulation system. Application in a Mediterranean climate. J Build Eng. 30: 101265-301.

    Article  Google Scholar 

  3. Leng G, Zhang X, Shi T, Chen G, Wu X, Liu Y, Fang M, Min X, Huang Z, Preparation and properties of polystyrene/silica fibres flexible thermal insulation materials by centrifugal spinning. Polymer 2019; 185; 121964–991.

    Article  Google Scholar 

  4. Jia G, Li Z, Liu P, Jing Q, Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material. J. Non-Cryst. Solids 2018;482: 192–202.

    Article  CAS  Google Scholar 

  5. Zeng Q, Mao T, Li H, Peng Y. Thermally insulating lightweight cement-based composites incorporating glass beads and nano-silica aerogels for sustainably energy-saving buildings. Energy Build. 2018; 174:97–110.

    Article  Google Scholar 

  6. Govan FA, editor. Thermal Insulation, Materials, and Systems for Energy Conservation in the’80s. ASTM International; 1983.

  7. Naldzhiev D, Mumovic D, Strlic M. Polyurethane insulation and household products-a systematic review of their impact on indoor environmental quality. Build Environ. 2020; 169: 106559.

    Article  Google Scholar 

  8. Aditya L, Mahlia TM, Rismanchi B, Ng HM, Hasan MH, Metselaar HS, Muraza O, Aditiya HB. A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 2017; 73: 1352–65.

    Article  CAS  Google Scholar 

  9. He YL, Xie T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 2015; 81: 28–50.

    Article  CAS  Google Scholar 

  10. Torres-Rivas A, Palumbo M, Haddad A, Cabeza LF, Jiménez L, Boer D. Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk. Appl. Energy. 2018; 224: 602–14.

    Article  CAS  Google Scholar 

  11. An W, Wang Z, Xiao H, Sun J, Liew KM. Thermal and fire risk analysis of typical insulation material in a high elevation area: Influence of sidewalls, dimension and pressure. Energy Convers. Manag. 2014; 88: 516–24.

    Article  CAS  Google Scholar 

  12. Stec AA, Hull TR. Assessment of the fire toxicity of building insulation materials. Energy Build. 2011; 43: 498–06.

    Article  Google Scholar 

  13. Lachheb A, Allouhi A, El Marhoune M, Saadani R, Kousksou T, Jamil A, Rahmoune M, Oussouaddi O. Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study. J. Clean. Prod. 2019; 209: 1411–9.

    Article  Google Scholar 

  14. Kairytė A, Kremensas A, Balčiūnas G, Matulaitienė I, Członka S, Sienkiewicz N. Evaluation of self-thermally treated wood plastic composites from wood bark and rapeseed oil-based binder. Constr. Build. Mater. 2020; 250: 118842.

  15. Boukhattem L, Boumhaout M, Hamdi H, Benhamou B, Nouh FA. Moisture content influence on the thermal conductivity of insulating building materials made from date palm fibers mesh. Constr. Build. Mater. 2017; 148: 811–23.

    Article  Google Scholar 

  16. Shabtai IA, Mishael YG. Catalytic polymer-clay composite for enhanced removal and degradation of diazinon. J. Hazard. Mater. 2017; 335: 135–42.

    Article  CAS  Google Scholar 

  17. Da Cunha SR, De Aguiar JL. Phase change materials and energy efficiency of buildings: A review of knowledge. J. Energy Storage. 2020; 27: 101083.

    Article  Google Scholar 

  18. Pisello AL. Thermal-energy analysis of roof cool clay tiles for application in historic buildings and cities. Sustain. Cities Soc. 2015; 19: 271–80.

    Article  Google Scholar 

  19. Rathore PK, Shukla SK, Gupta NK. Potential of microencapsulated PCM for energy savings in buildings: A critical review. Sustain. Cities Soc. 2020; 53: 101884.

    Article  Google Scholar 

  20. Sutcu M, Del Coz Díaz JJ, Rabanal FP, Gencel O, Akkurt S. Thermal performance optimization of hollow clay bricks made up of paper waste. Energy Build. 2014; 75: 96–108.

    Article  Google Scholar 

  21. Hu F, Wu S, Sun Y. Hollow- structured materials for thermal insulation. J. Adv. Mater. 2019; 31: 1801001.

    Article  Google Scholar 

  22. Gupta P, Verma C, Maji PK. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers. J. Supercrit. Fluids. 2019; 152: 104537.

    Article  Google Scholar 

  23. Estravís S, Tirado-Mediavilla J, Santiago-Calvo M, Ruiz-Herrero JL, Villafañe F, Rodríguez-Pérez MÁ. Rigid polyurethane foams with infused nanoclays: relationship between cellular structure and thermal conductivity. Eur. Polym. J. 2016; 80: 1–5.

    Article  Google Scholar 

  24. Xu JZ, Gao BZ, Kang FY. A reconstruction of Maxwell model for effective thermal conductivity of composite materials. Appl. Therm. Eng. 2016; 102: 972–9.

    Article  Google Scholar 

  25. Sundstrom DW, Lee YD. Thermal conductivity of polymers filled with particulate solids. J. Appl. Polym. Sci. 1972; 16: 3159–67.

    Article  CAS  Google Scholar 

  26. Agari Y, Tanaka M, Nagai S, Uno T. Thermal conductivity of a polymer composite filled with mixtures of particles. J. Appl. Polym. Sci. 1987; 34: 1429–37.

    Article  CAS  Google Scholar 

  27. Kucukdogan N, Aydin L, Sutcu M. Theoretical and empirical thermal conductivity models of red mud filled polymer composites. Thermochim. Acta. 2018; 665: 76–84.

    Article  CAS  Google Scholar 

  28. Reeves GM, Sims I, Cripps JC, editors. Clay materials used in construction. Geological Society of London; 2006.

  29. Ghyati S, Kassou S, El Jai M, Benhamou M. Investigation of PEG4000/Natural clay-based hybrids: Elaboration, characterization and theory. Mater. Chem. Phys. 2020; 239: 121993.

    Article  Google Scholar 

  30. Suresh K, Pugazhenthi G, Uppaluri R. Properties of polystyrene (PS)/Co-Al LDH nanocomposites prepared by melt intercalation. Mater. Today-Proc. 2019; 9: 333–50.

    Article  CAS  Google Scholar 

  31. Zhang G, Wu T, Lin W, Tan Y, Chen R, Huang Z, Yin X, Qu J. Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Compos. Sci. Technol. 2017; 145: 157–64.

    Article  CAS  Google Scholar 

  32. Puffr R, Špátová JL, Brožek J. Clay mineral/polyamide nanocomposites obtained by in-situ polymerization or melt intercalation. Appl. Clay. Sci. 2013; 83: 294–9.

    Article  Google Scholar 

  33. Ramakumar K, Saxena M, Deb S. Experimental evaluation of procedures for heat capacity measurement by differential scanning calorimetry. J. Therm. Anal. Calorim. 2001; 66:387–97.

    Article  CAS  Google Scholar 

  34. Nguyen HG, Horn JC, Bleakney M, Siderius DW, Espinal L. Understanding material characteristics through signature traits from helium pycnometry. Langmuir. 2019; 35: 2115–22.

    Article  CAS  Google Scholar 

  35. Standard AS. Standard Test Method for Evaluating the Resistance to Thermal Transmission of Materials by the Guarded Heat Flow Meter Technique. Designation: E1530–11. 2011.

  36. Verhulst PF, Deuxième mémoire sur la loi d’accroissement de la population, Mémoire de l’Academie Royale des Sciences et des Lettres et des Beaux-Arts de Belgique. 1847; 20:1-32.

  37. Bohor BF, Hughes RE. Scanning electron microscopy of clays and clay minerals. Clay Miner. 1971; 19: 49–54.

    Article  CAS  Google Scholar 

  38. Zampori L, Dotelli G, Stampino PG, Cristiani C, Zorzi F, Finocchio E. Thermal characterization of a montmorillonite, modified with polyethylene-glycols (PEG1500 and PEG4000), by in situ HT-XRD and FT IR: Formation of a high-temperature phase. Appl. Clay Sci. 2012; 59: 140–7.

    Article  Google Scholar 

  39. Amziane S, Collet F, Lawrence M, Magniont C, Picandet V, Sonebi M. Recommendation of the RILEM TC 236-BBM: characterisation testing of hemp shiv to determine the initial water content, water absorption, dry density, particle size distribution and thermal conductivity. Mater. Struct. 2017; 50: 1–1.

    Article  CAS  Google Scholar 

  40. Sutcu M, Akkurt S. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 2009; 35: 2625–31.

    Article  CAS  Google Scholar 

  41. Gounni A, Mabrouk MT, El Wazna M, Kheiri A, El Alami M, El Bouari A, Cherkaoui O. Thermal and economic evaluation of new insulation materials for building envelope based on textile waste. Appl. Therm. Eng. 2019; 149: 475–83.

    Article  Google Scholar 

  42. Laaroussi N, Cherki A, Garoum M, Khabbazi A, Feiz A. Thermal properties of a sample prepared using mixtures of clay bricks. Energy Procedia. 2013; 42: 337–46.

    Article  Google Scholar 

  43. Mounir S, Khabbazi A, Khaldoun A, Maaloufa Y, El Hamdouni Y. Thermal inertia and thermal properties of the composite material clay-wool. Sustain. Cities Soc. 2015; 19: 191–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are much indebted to Professor L. Khouchaf, from Lille University (France), for helpful discussions and fruitful correspondences. Also, we are grateful to Professor M. Cherkaoui, from ENSAM (Meknes-Morocco), for technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Kassou.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghyati, S., Kassou, S., El Jai, M. et al. Thermal properties of clay containing polymeric reinforcement as an eco-friendly bio-insulation composite for buildings. J Therm Anal Calorim 147, 7213–7228 (2022). https://doi.org/10.1007/s10973-021-11015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11015-7

Keywords

Navigation