Skip to main content

Flammability and Thermal Stability in Clay/Polyesters Nano-Biocomposites

  • Chapter
  • First Online:
Environmental Silicate Nano-Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In these years we are witnessing the growth of the biopolymers durable application markets such as buildings, transportation, electronic equipments etc. Thus, the fire retardancy issue is becoming important and it is expected that in the next future more and more research will be devoted to the subject. So far, a limited number of papers reports on flame retardant properties of biopolyesters and they are mainly on polylactide. Most of the papers published on this topic regarding biopolyesters, concern polyesters fire retarded by traditional fire retardants developed for oil sourced polymers, especially polyesters such as polyethylene terephthalate or other polymers such as polycarbonate. The recently developed use of nanoclays to fire retard polymers has proved to be beneficial also for polyesters from renewable resources. This chapter reviews the studies published on thermal and fire behaviour of polylactide nanocomposites based on clays. Indeed, PLA is the most important commercial plastic from renewable resources (RRP) polyester for which durable applications are being developed and fire retardant aspects are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging biobased plastics (PROBIP 2009). Commissioned by European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics. Group Science, Technology and Society (STS), Copernicus Institute for Sustainable Development and Innovation, Utrecht University Utrecht, the Netherlands, June 2009. Report No: NWS-E-2009-32

    Google Scholar 

  2. Horrocks AR, Price D (2001) Fire retardant materials. CRC Press, Boston

    Book  Google Scholar 

  3. Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5(12):1694–1696

    Article  CAS  Google Scholar 

  4. Zanetti M, Camino G, Mülhaupt R (2001) Combustion behaviour of EVA/fluorohectorite nanocomposites. Polym Degrad Stab 74(3):413–417

    Article  CAS  Google Scholar 

  5. Brindely GW, Brown G (1980) Crystal structure of clay minerals and their X-ray identification. Mineralogical Society, London

    Google Scholar 

  6. Solomon DH, Hawthorne DG (1991) Chemistry of pigments and fillers. Krieger, Malabar

    Google Scholar 

  7. Sposito G, Skipper NT, Sutton R, Park SH, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci USA 96:3358–3364

    Article  CAS  Google Scholar 

  8. Sherman JD (1996) Synthetic zeolites and other microporous oxide molecular sieves. Proc Natl Acad Sci USA 96:3471–3478

    Article  Google Scholar 

  9. Bocchini S, Fukushima K, Di Blasio A, Fina A, Frache A, Geobaldo F (2010) Polylactic acid and Polylactic acid-based nanocomposites photooxidation. Biomacromolecules 11(8):2919–2926

    Article  CAS  Google Scholar 

  10. Xie W, Gao Z, Pan W, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990

    Article  CAS  Google Scholar 

  11. Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Figure 1 in

    Google Scholar 

  12. Akelah A, Moet A (1996) Polymer-clay nanocomposites: free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. J Mater Sci 31(13):3589–3596

    CAS  Google Scholar 

  13. Agag T, Takeichi T (2000) Polybenzoxazine-montmorillonite hybrid nanocomposites: synthesis and characterization. Polymer 41(19):7083–7090

    Article  CAS  Google Scholar 

  14. Chen TK, Tien YI, Wie KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41(4):1345–1353

    Article  CAS  Google Scholar 

  15. Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42(3):1083–1094

    Article  CAS  Google Scholar 

  16. Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Arranged from Figure 8 in

    Google Scholar 

  17. Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436

    Article  CAS  Google Scholar 

  18. Davis RD, Gilman JW, Sutto TE, Callahan JH, Trulove PC, De Long HC (2004) Improved thermal stability of organically modified layered silicates clays. Clay Miner 52(2):171–179

    Article  CAS  Google Scholar 

  19. Bellucci F, Camino G, Frache A, Ristori V, Sorrentino L, Iannace S, Bian X, Guardasole M, Vaccaro S (2006) Effect of organoclay impurities on mechanical properties of EVA-layered silicate nanocomposites e-Polymers n°14

    Google Scholar 

  20. Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Arranged from Figure 9

    Google Scholar 

  21. Bellucci F, Camino G, Frache A, Sarra A (2007) Catalytic charring-volatilization competition in organoclay nanocomposites. Polym Degrad Stab 92(3):425–436 Scheme 1 in

    Google Scholar 

  22. Park SJ, Seo DI, Lee JR (2002) Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites. J Coll InterfSci 251(1):160–165

    Article  CAS  Google Scholar 

  23. Gilman JW, Kashiwagi T (1997) Nanocomposites: a revolutionary new flame retardant approach. SAMPE J 33:40–46

    CAS  Google Scholar 

  24. Kashiwagi T, Gilman JW, Nyden MR, Lomakin SM (1998) Polymer combustion and new flame retardants. In: Le Bras M, Camino G, Bourbigot S, Delobel R (eds.) Fire retardancy of polymers: the use of intumescence, The Royal Society of Chemistry, Cambridge

    Google Scholar 

  25. Gilman JW, Kashiwagi T, Giannelis EP, Manias E, Lomakin S, Lichtenhan JD, Jones P (1998) Nanocomposites: radiative gasification and vinyl polymer flammability. In: Le Bras M, Camino G, Bourbigot S, Delobel R (eds.) Fire retardancy of polymers: the use of intumescence, The Royal Society of Chemistry, Cambridge

    Google Scholar 

  26. Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR (2004) Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45(3):881–891

    Article  CAS  Google Scholar 

  27. Lewin M (2003) Some comments on the modes of action of nanocomposites in the flame retardancy of polymers. Fire Mater 27(1):1–7

    Article  CAS  Google Scholar 

  28. Pastore HO, Frache A, Boccaleri E, Marchese L, Camino G (2004) Heat induced structure modifications in polymer-layered silicate nanocomposites. Macromol Mater Eng 289(9):783–786

    Article  CAS  Google Scholar 

  29. Wang J, Du J, Zhu J, Wilkie CA (2002) An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites. Polym Degrad Stab 77(2):249–252

    Article  CAS  Google Scholar 

  30. Tang Y, Lewin M, Pearce EM (2006) Effects of annealing on the migration behavior of PA6/Clay nanocomposites. Macromol Rapid Comm 27(18):1545–1549

    Article  CAS  Google Scholar 

  31. Hao J, Lewin M, Wilkie CA, Wang J (2006) Additional evidence for the migration of clay upon heating of clay/polypropylene nanocomposites from X-ray photoelectron spectroscopy (XPS). Polym Degrad Stab 91(10):2482–2485

    Article  CAS  Google Scholar 

  32. Tang Y, Lewin M (2007) Maleated polypropylene OMMT nanocomposite: annealing, structural changes, exfoliated and migration. Polym Degrad Stab 92(1):53–60

    Article  CAS  Google Scholar 

  33. Lewin M, Tang Y (2008) Oxidation-migration cycle in polypropylene-based nanocomposites. Macromolecules 41(1):13–17

    Article  CAS  Google Scholar 

  34. Frache A, Monticelli O, Ceccia S, Brucellaria A, Casale A (2008) Preparation of nanocomposites based on PP and PA6 by direct injection moulding. Polym Eng Sci 48(12):2373–2381

    Article  CAS  Google Scholar 

  35. Ceccia S, Bellucci F, Monticelli O, Frache A, Traverso G, Casale A (2010) The effect of annealing conditions on the intercalation and exfoliation of layered silicates in polymer nanocomposites. J Polym Sci Pol Phys 48(23):2476–2483

    Article  CAS  Google Scholar 

  36. Mcneill IC, Leiper HA (1985) Degradation studies of some polyesters and polycarbonates 1 polylactide: general features of the degradation under programmed heating conditions. Polym Degrad Stab 11(3):267–285

    Article  CAS  Google Scholar 

  37. Mcneill IC, Leiper HA (1985) Degradation studies of some polyesters and polycarbonates 2 polylactide: degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab 11(4):309–326

    Article  CAS  Google Scholar 

  38. Wachsen O, Reachert KH, Kruger RP, Much H, Schulz G (1997) Thermal decomposition of biodegradable polyesters—III studies on the mechanisms of thermal degradation of oligo-L-lactide using SEC LACCC and MALDI-TOF-MS. Polym Degrad Stab 55(2):225–231

    Article  CAS  Google Scholar 

  39. Fan YJ, Nishida H, Hoshihara S, Shirai Y, Tokiwa Y, Endo T (2003) Pyrolysis kinetics of poly(L-lactide) with carboxyl and calcium salt end structures. Polym Degrad Stab 79(3):547–562

    Article  CAS  Google Scholar 

  40. Liu X, Zou Y, Li W, Cao G, Chen W (2006) Kinetics of thermo-oxidative and thermal degradation of poly(D, L-lactide) (PDLLA) at processing temperature. Polym Degrad Stab 91(12):3259–3265

    Article  CAS  Google Scholar 

  41. Kopinke FD, Mackenzie K (1997) Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(b-hydroxybutyric acid). J Anal Appl Pyrol 40–41:43–53

    Article  Google Scholar 

  42. Kopinke FD, Remmler M, Mackenzie K, Moder M, Wachsen O (1996) Thermal decomposition of biodegradable polyesters—II Poly(lactic acid). Polym Degrad Stab 53(3):329–342

    Article  CAS  Google Scholar 

  43. Gogolewski S, Jovanovic M, Perren S, Dillon J, Hughes M (1993) The effect of melt-processing on the degradation of selected polyhydroxyacids: polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co-valerates. Polym Degrad Stab 40(3):313–322

    Article  CAS  Google Scholar 

  44. Jamshidi K, Hyon S, Ikada Y (1988) Thermal characterization of polylactides. Polymer 29(12):2229–2234

    Article  CAS  Google Scholar 

  45. Cam D, Marucci M (1997) Influence of residual monomers and metals on poly (L-lactide) thermal stability. Polymer 38(8):1879–1884

    Article  CAS  Google Scholar 

  46. Bensons SW, Nangia PS (1979) Some unresolved problems in oxidation and combustion. Accounts Chem Res 12(7):223–228

    Article  Google Scholar 

  47. Gupta MC, Deshmukh VG (1982) Thermal oxidative degradation of poly-lactic acid Part I: activation energy of thermal degradation in air. Coll Polym Sci 260(3):308–311

    Article  CAS  Google Scholar 

  48. Gupta MC, Deshmukh VG (1982) Thermal oxidative degradation of poly-lactic acid Part II: molecular weight and electronic spectra during isothermal heating. Coll Polym Sci 260(5):514–517

    Article  CAS  Google Scholar 

  49. Pluta M, Galeski A, Alexandre M, Paul MA, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 86(6):1497–1506

    Article  CAS  Google Scholar 

  50. Paul MA, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44(2):443–450

    Article  CAS  Google Scholar 

  51. Marras S, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids. Eur Polym J 43(6):2191–2206

    Article  CAS  Google Scholar 

  52. Chen G, Yoon J (2005) Morphology and thermal properties of poly(L-lactide)/poly (butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J Polym Sci Polym Phys 43(5):478–487

    Article  CAS  Google Scholar 

  53. Zhou Q, Xanthos M (2009) Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degr Stab 94(3):327–338

    Article  CAS  Google Scholar 

  54. Okamoto K, Toshima K, Matsumura S (2005) Degradation of poly(lactic acid) into repolymerizable oligomer using montmorillonite K10 for chemical recycling. Macromol Biosci 5(9):813–820

    Article  CAS  Google Scholar 

  55. Fukushima K, Murariu M, Camino G, Dubois P (2010) Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Poly Degr Stab 95(6):1063–1076

    Article  CAS  Google Scholar 

  56. Chang J, An Y, Sur G (2003) Poly(lactic acid) nanocomposites with various organoclays I Thermomechanical properties, morphology and gas permeability. J Polym Sci Polym Phys 41(1):94–103

    Article  CAS  Google Scholar 

  57. Lee JW, Lim YT, Park OO (2000) Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym Bull 45(2):191–198

    Article  CAS  Google Scholar 

  58. ISO standard 5660 (2002)

    Google Scholar 

  59. ASTM standard E 1354 (2003)

    Google Scholar 

  60. Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17(22):2283–2300

    Article  CAS  Google Scholar 

  61. Bartholmai MM, Schartel B (2004) Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym Adv Technol 15(7):355–364

    Article  CAS  Google Scholar 

  62. Bourbigot S, Fontaine G (2010) Flame retardancy of polylactide: an overview. Polym Chem 1(9):1413–1422

    Article  CAS  Google Scholar 

  63. Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mat 14(2):881–887

    Article  CAS  Google Scholar 

  64. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH (2000) Flammability properties of polymer—layered-silicate nanocomposites polypropylene and polystyrene nanocomposites. Chem Mat 12(7):1866–1873

    Article  CAS  Google Scholar 

  65. Bocchini S, Frache A, Camino G, Costantini E, Ferrara G, Fatinel F (2006) Poly-1-Butene/Clay nanocomposite effect of compatibilisers on thermal and fire retardant properties. Polym Adv Technol 17(4):246–254

    Article  CAS  Google Scholar 

  66. Bourbigot S, Fontaine G, Bellayer S, Delobel R (2008) Processing and nanodispersion: A quantitative approach for polylactide nanocomposites. Polym Test 27(1):2–10

    Article  CAS  Google Scholar 

  67. Bourbigot S, Fontaine G, Duquesne S, Delobel R (2008) PLA nanocomposites: quantification of clay nanodispersion and reaction to fire. Int J Nanotechnol 5(6/7/8):683–692

    Google Scholar 

  68. Murariu M, Bonnaud L, Yoann P, Fontaine G, Bourbigot S, Dubois P (2010) New trends in polylactide (PLA)-based materials: “Green” PLA-Calcium sulfate (nano) composites tailored with flame retardant properties. Polym Degrad Stab 95(3):374–381

    Article  CAS  Google Scholar 

  69. Solarski S, Mahjoubi F, Ferreira M, Devaux E, Bachelet P, Bourbigot S, Delobel R, Coszach P, Murariu M, Da Silva FA, Alexandre M, Degee P, Dubois P (2007) Plasticized Polylactide/clay nanocomposite textile: thermal, mechanical, shrinkage and fire properties. J Mater Sci 42(13):5105–5117

    Article  CAS  Google Scholar 

  70. Murariu M, Da Silva Ferreira A, Bonnaud L, Dubois P (2009) Calcium sulfate as high-performance filler for polylactide (PLA) or how to recycle gypsum as by-product of lactic acid fermentation process. Compos Interf 16(2–3):65–84

    Article  CAS  Google Scholar 

  71. Fontaine G, Bourbigot S (2009) Intumescent polylactide: A nonflammable material. J Appl Polym Sci 113(6):3860–3865

    Article  CAS  Google Scholar 

  72. Bourbigot S, Le Bras M, Delobel R, Decressain R, Amoureux JP (1996) Synergistic effect of zeolite in an intumescence process: study of the carbonaceous structures using solid-state NMR. J Chem Soc Faraday T 92(1):149–158

    Article  CAS  Google Scholar 

  73. Bourbigot S, Le Bras M, Dabrowski F, Gilman JW, Kashiwagi T (2000) PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater 24(4):201–208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Bocchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Bocchini, S., Camino, G. (2012). Flammability and Thermal Stability in Clay/Polyesters Nano-Biocomposites. In: Avérous, L., Pollet, E. (eds) Environmental Silicate Nano-Biocomposites. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4108-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4108-2_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4101-3

  • Online ISBN: 978-1-4471-4108-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics