Skip to main content
Log in

Rapid optical plasmonic transformation of silver-doped glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel two-step method for rapid optical plasmonic transformation (ROPT) of Ag-doped phosphate glass is proposed. The ROPT process blends the time efficiency of a laser irradiation treatment with the precise temperature control over the entire glass volume. The time needed for optical transformation is reduced to 3 min, compared to 120 min during the conventional isothermal heat treatment (HT). The proposed method employs a differential scanning calorimeter (DSC) for nanoparticle (NP) synthesis. For consistent optical density comparison of the synthesized plasmonic glasses, a plasmonic merit factor, \(\zeta\), is introduced. The ROPT method exhibits a plasmonic factor growth rate three orders of magnitude higher, 0.14 \(\zeta\) s−1, compared to the assessed rate of the conventional isothermal HT, 0.27 × 10–3 \(\zeta\) s−1. The fast growth is discussed in the framework of sub-nanometer particle coalescence at temperatures 80–100 °C above the glass transition temperature of the glass nanocomposite. The proposed solid-state NP synthesis may be applied for various noble metal NPs in different types of glass matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wei Y, Ebendorff-Heidepriem E, Zhao J. Recent advances in hybrid optical materials: integrating nanoparticles within a glass matrix. Adv Opt Mater. 2019;7:1900702.

    Article  CAS  Google Scholar 

  2. Stalmashonak A, Abdolvand A, Seifert G. Metal-glass nanocomposite for optical storage of information. Appl Phys Lett. 2011;99:201904.

    Article  Google Scholar 

  3. Chen Y, Jaakola JJ, Säynätjoki A, Tervonen A, Honkanen S. Glass-embedded silver nanoparticle patterns by masked ion-exchange process for surface-enhanced Raman scattering. J Raman Spectrosc. 2011;42:936–40.

    Article  CAS  Google Scholar 

  4. Zhao J, Lin J, Zhang W, Wei H, Chen Y. SERS-active Ag nanoparticles embedded in glass prepared by a two-step electric field-assisted diffusion. Opt Mater. 2015;39:97–102.

    Article  CAS  Google Scholar 

  5. Som T, Karmakar B. Surface plasmon resonance and enhanced fluorescence application of single-step synthesized elliptical nano gold-embedded antimony glass dichroic nanocomposites. Plasmonics. 2010;5:149–59.

    Article  CAS  Google Scholar 

  6. Kuznetsov AS, Tikhomirov VK, Shestakov MV, Moshchalkov VV. Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors. Nanoscale. 2013;5:10065–75.

    Article  CAS  Google Scholar 

  7. Jiménez JA. Dichroism in plasmonic Cu nanocomposite glass: selective enhancement of the orange-red emission from Sm3+. Opt Mater X. 2019;1:100002–9.

    Google Scholar 

  8. Uchida K, Kaneko S, Omi S, Hata C, Tanji H, Asahara Y, Ikushima AJ, Tokisaki T, Nakamura A. Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. J Opt Soc Am B. 1994;11:1236–43.

    Article  CAS  Google Scholar 

  9. Voisin C, Del Fatti N, Christofilos D, Vallée F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J Phys Chem B. 2001;105:2264.

    Article  CAS  Google Scholar 

  10. Karthikeyan B, Anija M, Suchand Sandeep CS, Muhammad Nadeer TM, Philip R. Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature. Opt Commun. 2008;281:2933–7.

    Article  CAS  Google Scholar 

  11. Manzani D, Almeida JMP, Napoli M, De Boni L, Nalin M, Afonso CRM, Ribeiro SJL, Mendonça CR. Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles. Plasmonics. 2013;8:1667–74.

    Article  CAS  Google Scholar 

  12. Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer; 1995.

    Book  Google Scholar 

  13. Sendova M, Jiménez JA. Plasmonic coupling in silver nanocomposite glasses. J Phys Chem C. 2012;116:17764–72.

    Article  CAS  Google Scholar 

  14. Yamane M, Asahara Y. Glasses for photonics. UK: Cambridge University Press; 2000.

    Book  Google Scholar 

  15. El Hamzaoui H, Ouerdane Y, Bigot L, Bouwmans G, Capoen B, Boukenter A, Girard S, Bouazaoui M. Opt Express. 2012;20:29751.

    Article  Google Scholar 

  16. Nogami M, Hung LX, Tuyen HV, Quang VX. Formation of Ni nanoparticles in Al2O3–SiO2 glass by reacting with hydrogen gas. J Mater Sci. 2019;54:13883–91.

    Article  CAS  Google Scholar 

  17. Trave E, Gonella F, Calvelli P, Cattaruzza E, Canton P, Cristofori D, Quaranta A, Pellegrini G. Laser beam irradiation of silver doped silicate glasses. Nucl Instrum Meth B. 2010;268:3177–82.

    Article  CAS  Google Scholar 

  18. Jiménez JA. 31P NMR and thermal evaluation of Ag2O and SnO co-doped aluminophosphate glasses for photonic applications. Materialia. 2018;3:107–12.

    Article  Google Scholar 

  19. Mancini M, Sendova M, Mauro J. Geometric analysis of the calorimetric glass transition and fragility using constant cooling rate cycles. Int J Appl Glass Sci. 2021. https://doi.org/10.1111/ijag.16073.

    Article  Google Scholar 

  20. Jiménez JA, Sendova M, Hartsfield T, Sendova-Vassileva M. In situ optical micro-spectroscopy of the growth and oxidation of silver nanoparticles in silica thin films. Mater Res Bull. 2011;46:158–65.

    Article  Google Scholar 

  21. Sendova M, Mancini M. Direct surface area measurement from digital images via brightness histogram method. Meas Sci Technol. 2020;31(10):31105602.

    Article  Google Scholar 

  22. Liu HB, Jose-Yacaman M, Perez R, Ascencio JA. Studies of nanocluster coalescence at high temperature. Appl Phys A. 2003;77:63–7.

    Article  CAS  Google Scholar 

  23. Yukna J, Wang L. Molecular dynamics studies of the coalescence of silver clusters. J Phys Chem C. 2007;111:13337–47.

    Article  CAS  Google Scholar 

  24. Luo W, Hu W, Xiao Sh. Size effect on the thermodynamic properties of silver nanoparticles. Phys Chem C. 2008;112:2359–69.

    Article  CAS  Google Scholar 

  25. Zheng Q, Zhang Y, Montazerian M, Gulbiten O, Mauro J, Zanotto E, Yue Y. Understanding glass through differential scanning calorimetry. Chem Rev. 2019;119:7848–939.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors of this manuscript have contributed in the following ways: MS contributed to the project lead, optical density analysis, and quantification of plasmonic transformation. MM contributed to the process design and engineering, data collection, and thermal analysis. JAJ contributed to the glass matrix synthesis.

Corresponding author

Correspondence to Matthew Mancini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sendova, M., Mancini, M. & Jiménez, J.A. Rapid optical plasmonic transformation of silver-doped glass. J Therm Anal Calorim 147, 6161–6166 (2022). https://doi.org/10.1007/s10973-021-10967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10967-0

Navigation