Skip to main content
Log in

Effect of aromatic dihydrazide compounds on crystallization behavior and mechanical properties of isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

we prepared a series of aromatic dihydrazide compounds which were used as nucleating agents (NAs) in isotactic polypropylene (iPP). Differential scanning calorimetry (DSC) was used to study the influence of aromatic dihydrazide compounds with different structures on the crystallization behavior of iPP. The optimum concentration and mechanical properties of 1-N′,3-N′-dibenzoylbenzene-1,4-dicarbohydrazide (PTADH-Ph-3) with the best nucleation effect were investigated. The results of DSC demonstrate that all synthesized compounds have strong α-nucleating ability for iPP. When the para position of phenylenedihydrazide is substituted by phenyl, the crystallization peak temperature (Tc) of nucleated iPP is 14.4 °C higher than that of pure iPP. The Tc of iPP nucleated by dihydrazide compounds first raises sharply and then reduces slowly with increasing the number of carbon atoms in straight chain alkyl. When the number of carbon atoms in straight chain alkyl is two, the nucleation effect of nucleated iPP is the best, and the Tc of iPP nucleated with PTADH-CH-1 is higher 11.2 °C than that of pure iPP. While the addition amount of PTADH-Ph-3 is 0.2 mass%, the Tc of nucleated iPP can reach the maximum at 130.6 °C. The rigidity of iPP nucleated with PTADH-Ph-3 is improved. Compared with pure iPP, the impact and tensile strength of iPP nucleated with 0.2 mass% PTADH-Ph-3 have little change, but the flexural modulus and flexural strength increased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng HL, Shang MY, He Y, Gao ZY. Synthesis and effect of N, N’-diphenylterephthalamide on crystallization of isotactic polypropylene. Polym Sci, Ser B. 2020;62(5):473–82.

    Article  Google Scholar 

  2. Zhang YF, Li D, Chen QJ. Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid Polym Sci. 2017;295(10):1973–82.

    Article  CAS  Google Scholar 

  3. Jiang WJ, Song XD, Zhou R, Wu ZK, Hu B, Zhang Y, Liang ZM, Chen ZF, Kang J, Xiang M. Influences of molecular structure on the isothermal crystallization behavior and mechanical properties of β-nucleated isotactic polypropylene. Polymer-Plastics Technology and Materials. 2020;59(15):1724–35.

    Article  CAS  Google Scholar 

  4. Xia MQ, Zhang YF. The relation between chemical structure of branched amide nucleating agents and nucleation effect in isotactic polypropylene. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09860-z.

    Article  Google Scholar 

  5. Duguay AJ, Kiziltas A, Nader JW, et al. Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites. J Nanopart Res. 2014;16(3):2307.

    Article  CAS  Google Scholar 

  6. Zhang YF, Chen H. Effects of nucleating agent 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide) on properties and crystallization behaviors of isotactic polypropylene. Colloid Polym Sci. 2013;292(2):493–8.

    Article  CAS  Google Scholar 

  7. Li CH, Luo SS, Wang JF, Wu H, Guo SY, Zhang X. Conformational regulation and crystalline manipulation of PLLA through a self-assembly nucleator. Biomacromol. 2017;18(4):1440–8.

    Article  CAS  Google Scholar 

  8. Zhao SM, Chen FH, Huang YJ, Dong JY, Han CC. Crystallization behaviors in the isotactic polypropylene/graphene composites. Polymer. 2014;55(16):4125–35.

    Article  CAS  Google Scholar 

  9. Zhang X, Zhao SC, Meng X, Xin Z. The mechanical properties, crystallization and rheological behavior of isotactic polypropylene with nucleating agent supported on polyhedral oligomeric silsesquioxanes (POSS). J Polym Res. 2020;27(10):303.

    Article  CAS  Google Scholar 

  10. Zhang N, Zhang Q, Wang K, Deng H, Fu Q. Combined effect of β-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotactic polypropylene. J Therm Anal Calorim. 2012;107(2):733–43.

    Article  CAS  Google Scholar 

  11. Lu QL, Dou Q. Crystalline form transformation of isotactic polypropylene induced by N,N’-diphenyl glutaramide. e-Polymers, 2008, No. 076.

  12. Xie Q, Han LL, Shan GR, Bao YZ, Pan PJ. Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sust Chem Eng. 2016;4(5):2680–8.

    Article  CAS  Google Scholar 

  13. Zhang YF, Mao JJ. Effect of chemical structure of hydrazide compounds on nucleation effect in isotactic polypropylene. J Polym Res. 2019;26(12):277.

    Article  CAS  Google Scholar 

  14. Zhang YF, Chen H, Liu BB, Gu YH, Li XX. Isothermal and non-isothermal crystallization of isotactic polypropylene nucleated with 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide). Thermochim Acta. 2014;590:226–31.

    Article  CAS  Google Scholar 

  15. Jiang XF, Zhao SC, Meng X, Xin Z. Effect of the metal phenylphosphonates on the nonisothermal crystallization and performance of isotactic polypropylene. J Polym Sci, Part B: Polym Phys. 2019;57:161–73.

    Google Scholar 

  16. Jia N, Xing Q, Xia GM, Sun J, Song R, Huang W. Enhanced β-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater Lett. 2015;139:212–5.

    Article  CAS  Google Scholar 

  17. Albach B, Vianna dos Santos PH, Silveira Rampon DS, Barbosa RV. An evaluation of modified Kaolinite surface on the crystalline and mechanical behavior of polypropylene. Polymer Test. 2019;75:237–45.

    Article  CAS  Google Scholar 

  18. Kersch M, Pischke L, Schmidt HW, Altstädt V. Influence of trisamide-based additives on the morphological and mechanical properties of isotactic polypropylene. Polymer. 2014;55(15):3227–33.

    Article  CAS  Google Scholar 

  19. Kersch M, Schmidt HW, Altstädt V. Influence of different beta-nucleating agents on the morphology of isotactic polypropylene and their toughening effectiveness. Polymer. 2016;98:320–6.

    Article  CAS  Google Scholar 

  20. Luo SS, Zheng Y, Zheng Z, Wu H, Shen JB, Guo SY. Competitive growth of α- and β-transcrystallinity in isotactic polypropylene induced by the multilayered distribution of α-nucleating agents: Toward high mechanical performances. Chem Eng J. 2019;355:710–20.

    Article  CAS  Google Scholar 

  21. Fan YQ, Zhu J, Yan SF, Chen XS, Yin JB. Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nucleating agent and poly(L-lactic acid). Polymer. 2015;67:63–71.

    Article  CAS  Google Scholar 

  22. Yoshimoto S, Ueda T, Yamanaka K, Kawaguchi A, Tobita E, Haruna T. Epitaxial act of sodium 2,2′-methylene-bis-(4,6-di- t -butylphenylene)phosphate on isotactic polypropylene. Polymer. 2001;42:9627–31.

    Article  CAS  Google Scholar 

  23. Abraham F, Ganzleben S, Hanft D, Smith P, Schmidt HW. Synthesis and structure-efficiency relations of 1,3,5-benzenetrisamides as nucleating agent and clarifiers for isotactic polypropylene. Macromol Chem Phys. 2010;221(2):171–81.

    Article  CAS  Google Scholar 

  24. Zhang YF, Zhou PZ, Guo LH, Hou HH. The relationship between crystal structure and nucleation effect of 1,3,5-benzenetricarboxylic acid tris(phenylamide) in isotactic polypropylene. Colloid Polym Sci. 2017;295(4):619–26.

    Article  CAS  Google Scholar 

  25. Li YJ, Huang P, Guo SW, Nie MA. promising and green strategy for recycling waste oyster shell powder as bio-filler in polypropylene via mycelium-enlightened interfacial interlocking. J Clean Product. 2020;272:122694.

    Article  CAS  Google Scholar 

  26. Li YJ, Liu HY, Huang XL, Song XD, Kang J, Chen ZF, Zeng FXY, Chen JY. Investigation on the roles of β-nucleating agents in crystallization and polymorphic behavior of isotactic polypropylene. Polym Sci, Ser A. 2020;62(5):470–80.

    Article  CAS  Google Scholar 

  27. Bednarek WH, Ciesielczyk F, Odalanowska M, Paukszta D, Piasecki A. Effect of lanthanum-modified magnesium silicate on isotactic polypropylene crystallization in composite materials during shear flow. Polym Eng Sci. 2020;60(8):1856–65.

    Article  CAS  Google Scholar 

  28. Liu JR, Zhu TC. Effect of entanglement upon branching on dispersibility, β-nucleating and mechanically strengthening ability of polystyrene in isotactic polypropylene. Polym Bull. 2020. https://doi.org/10.1007/s00289-020-03259-4.

    Article  Google Scholar 

  29. Ding C, Wu GG, Zhang Y, Yang Y, Yin B, Yang MB. Effect of surfactant assisted β-nucleating agent self-assembly on the crystallization of polypropylene. Polymer 2019;184:121895.

    Article  CAS  Google Scholar 

  30. Zheng H, Zeng FXY, Chen ZF, Kang J, Chen JY, Cao Y, Xiang M. Exploring the roles of molecular structure on the β-crystallization of polypropylene random copolymer. J Polym Res. 2017;24(12):225.

    Article  CAS  Google Scholar 

  31. Broda J, Baczek M, Fabia J, Binias D, Fryczkowski R. Nucleating agents based on graphene and graphene oxide for crystallization of the β-form of isotactic polypropylene. J Mater Sci. 2019;55(4):1436–50.

    Article  CAS  Google Scholar 

  32. Liu J, Zhu X, Cao Z. Poly(acrylonitrile-butadiene-styrene) as a special beta-nucleating agent on the toughness of isotactic polypropylene. Polymers (Basel). 2019;11(11):1894.

    Article  CAS  Google Scholar 

  33. Yue Y, Yi JJ, Wang L, Feng JC. Toward a more comprehensive understanding on the structure evolution and assembly formation of a bisamide nucleating agent in polypropylene melt. Macromolecules. 2020;53(11):4381–94.

    Article  CAS  Google Scholar 

  34. Wang J, Gahleitner M, Gloger D, Bernreitner K. β-Nucleation of isotactic polypropylene: chain structure effects on the effectiveness of two different nucleating agents. Express Polym Lett. 2020;14(5):491–502.

    Article  CAS  Google Scholar 

  35. Liu J, Liang H. Heterogeneous nucleation and self-nucleation of isotactic polypropylene with addition of nano-ZnO. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10972-020-10446-y.

    Article  Google Scholar 

  36. Horváth F, Bihari L, Bodrogi D, Gombár T, Hilt B, Keszei B, Krain T, Simon A, Menyhárd A. Effect of N, N′-Dicyclohexyldicarboxamide Homologues on the Crystallization and Properties of Isotactic Polypropylene. ACS Omega. 2021;6(13):9053–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ghugare SV, Govindaiah P, Avadhani CV. Polypropylene-organoclay nanocomposites containing nucleating agents. Polym Bull. 2009;63(6):897–909.

    Article  CAS  Google Scholar 

  38. Qin SX, Hu YN, Tian XJ, Tian Y, Liu WZ, Zhao LF. Modification of cellulose nanocrystals by self-assembly nucleation agents to improve poly(L-lactide) nanocomposite’ properties. Cellulose. 2020;27(8):4337–53.

    Article  CAS  Google Scholar 

  39. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Nucleating agent for poly(L-lactic acid)—An optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci. 2007;103(1):198–203.

    Article  CAS  Google Scholar 

  40. Mendoza G, Pena-Juarez MG, Gonzalez-Calderon JA, Perez E. Used of chemically modified titanium dioxide particles to mediate the non-isothermal cold crystallization of poly(latic acid). J Mex Chem Soc. 2020;64(2):117–36.

    Google Scholar 

  41. Zhang YF, Zhou PZ, Mao JJ, Liu N. Influences of octamethylenedicarboxylic dibenzoylhydrazide on crystallization, melting behaviors, and properties of isotactic polypropylene. Polym Bull. 2019;76(4):1685–96.

    Article  CAS  Google Scholar 

  42. Zhou PZ, Zhang YF, Lin XF. Crystallization kinetics of isotactic polypropylene nucleated with octamethylenedicarboxylic dibenzoylhydrazide under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2019;136(2):749–57.

    Article  CAS  Google Scholar 

  43. Zhang QY, Chen ZF, Wang B, Chen JY, Yang F, Kang J, Cao Y, Xiang M, Li HL. Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci. 2015;132(4):41355–63.

    Article  CAS  Google Scholar 

  44. Wang KZ, Li XG, Wang GJ. Preparation method for improving yield of fat dicarboxylic dihydrazide nucleating agent. CN Patent, CN 102976969 A

  45. Cai YH. Synthesis, process, morphology and thermal stability of N, N’-bis (benzoyl) tridecanedioic acid dihydrazid. Asian J Chem. 2011;23(6):2262–4.

    Google Scholar 

  46. Okada K, Watanabe K, Urushihara T, Toda A, Hikosaka M. Role of epitaxy of nucleating agent (NA) in nucleation mechanism of polymers. Polymer. 2007;48(1):401–8.

    Article  CAS  Google Scholar 

  47. Yang JJ, Liang R, Chen YC, Zhang CQ, Zhang RL, Wang XM, Kong R, Chen QX. Using a self-assemblable nucleating agent to tailor crystallization behavior, crystal morphology, polymorphic crystalline structure, and biodegradability of poly(1,4-butylene adipate). Ind Eng Chem Res. 2017;56(28):7910–9.

    Article  CAS  Google Scholar 

  48. Kong WL, Zhu B, Su FM, Wang Z, Shao CG, Wang YM, Liu CT, Shen CY. Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization. Polymer. 2019;168:77–85.

    Article  CAS  Google Scholar 

  49. Xing Q, Li RB, Dong X, Luo FL, Kuang X, Wang DJ, Zhang LY. Enhanced crystallization rate of poly(l-lactide) mediated by a hydrazide compound: nucleating mechanism study. Macromol Chem Phys. 2015;216(10):1134–45.

    Article  CAS  Google Scholar 

  50. Xing Q, Li RB, Zhang XQ, Dong X, Wang DJ, Zhang LY. Tailoring crystallization behavior of poly (l-lactide) with a low molecular weight aliphatic amide. Colloid Polym Sci. 2015;293(12):3573–83.

    Article  CAS  Google Scholar 

  51. Legras R, Mercier JP, Nield E. Polymer crystallization by chemical by chemical nucleation. Nature. 1983;304(5925):432.

    Article  CAS  Google Scholar 

  52. Yang S, Li Y, Liang YY, Wang WJ, Luo Y, Xu JZ, Li ZM. Graphene oxide induced isotactic polypropylene crystallization: role of structural reduction. RSC Adv. 2016;6(28):23930–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Hunan Provincial Natural Science Foundation of China (No. 2019JJ40294) and Changsha Science and Technology Bureau (No. 1901105) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Fei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zhang, YF. Effect of aromatic dihydrazide compounds on crystallization behavior and mechanical properties of isotactic polypropylene. J Therm Anal Calorim 147, 6239–6247 (2022). https://doi.org/10.1007/s10973-021-10961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10961-6

Keywords

Navigation