Skip to main content
Log in

The mechanical properties, crystallization and rheological behavior of isotactic polypropylene with nucleating agent supported on polyhedral oligomeric silsesquioxanes (POSS)

  • Original paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The influence of the nucleating agent that supported on polyhedral oligomeric silsesquioxanes (supported NA) on the properties of iPP was investigated in detail. It was found that the supported NA have higher nucleating efficiency than the original NA powder in the iPP system. The flexural modulus of iPP increased by 11.6% with 0.04 wt.% original NA powder and increased by 20.5% when supported NA added. The sizes of supported NA were investigated by scanning electron microscope (SEM) coupled with energy dispersive spectrometer (EDS). The crystal structure and morphology of the iPP samples was studied using wide-angle X-ray diffraction (WAXD) and polarized optical microscope (POM), respectively. The nucleating efficiency of supported NA and the dry mix of NA and POSS was also analyzed. The non-isothermal crystallization behaviors were analyzed using Mo’s model. Besides, the sample with supported NA exhibited lower complex viscosity (η*) values, indicting supported NA can act as a lubricant in system. A possible crystallization mechanism of supported NA in the iPP was proposed.

Nucleating agent (NA) can effectively improve the properties of isotactic polypropylene (iPP). However, for the NA insensitive to the melt, its dispersion in iPP is the usual problem. Supporting NA on polyhedral oligomeric silsesquioxanes (POSS) can reduce the size of NA, improve its dispersion and thus effectively enhance its nucleating efficiency in iPP. In addition, POSS is a kind of an organic-inorganic hybrid materials and reputed as the smallest particles of silica. Using it as support of NA exhibit unusual melt viscosity reduction without compromising optical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Creton C (2017) Molecular stitches for enhanced recycling of packaging. Science 355(355):797–798

    Article  CAS  Google Scholar 

  2. Ajorloo M, Ghodrat M, Moghbeli MR, Kang W-H (2020) A statistical approach to investigate the effects of multicomponent fractions on the mechanical properties of Pp/Ppma/talc/Poe composites. J Polym Res 27(3):1–18

    Article  Google Scholar 

  3. De Rosa C, Auriemma F (2006) Structural-mechanical phase diagram of isotactic polypropylene. J Am Chem Soc 128(34):11024–11025

    Article  Google Scholar 

  4. Busico V, Cipullo R (2001) Microstructure of polypropylene. Prog Polym Sci 26(3):443–533

    Article  CAS  Google Scholar 

  5. Wang G, Hou S, Cao J, Ding P, Shen J, Chen J (2018) Reinforcing and toughening isotactic polypropylene through shear-induced crystallization and Β-nucleating agent induced crystallization. J Polym Res 25(11):233

    Article  Google Scholar 

  6. Yang Y, Xin Z, Zhao S, Shi Y, Zhou S, Zhou J, Ye C (2017) Nucleation effects of zinc Adipate as Β-nucleating agent in ethylene-propylene block copolymerized polypropylene. J Polym Res 24(9)

  7. Zhao SC, Gong HZ, Yu X, Xin Z, Sun SB, Zhou S, Shi YQ (2016) A highly active an d selective β-nucleating agent for isotactic polypropylene and crystallization behavior of β-nucleated isotactic polypropylene under rapid cooling. J Appl Polym Sci 133(32):43767

  8. Jiang X f, Zhang W x, Zhao S c, Zhou S, Shi YQ, Xin Z (2018) Effect of benzoic acid surface modified alumina nanoparticles on the mechanical properties and crystallization behavior of isotactic polypropylene Nanocomposites. RSC Adv 8(37):20790–20800

    Article  CAS  Google Scholar 

  9. Yang Y, Zhang W, Qin W, Xin Z, Zhao S, Chen L, Zhou S (2018) The nucleation effect of self-dispersed Β-nucleating agent in ethylene-propylene block copolymerized polypropylene. Colloid Polym Sci 296(10):1627–1633

    Article  CAS  Google Scholar 

  10. Niu H, Wang N, Li Y (2018) Influence of Beta-nucleating agent dispersion on the crystallization behavior of isotactic polypropylene. Polymer 150:371–379

    Article  CAS  Google Scholar 

  11. Yi QF, Wen XJ, Dong JY, Han CC (2007) In-reactor compounding Metallocenic isotactic poly(propylene)/nucleation agent compositions by employing the nucleation agent as a catalyst support. Macromol React Eng 1(3):307–312

    Article  CAS  Google Scholar 

  12. Wang N, Niu H, Li Y (2017) A novel catalytic way of comprising a Β-nucleating agent in isotactic polypropylene: catalyst design strategy and polymerization-assisted dispersion. Polymer 113:259–266

    Article  CAS  Google Scholar 

  13. Yi Q, Wen X, Dong J, Han CC (2008) A novel effective way of comprising a Β-nucleating agent in isotactic polypropylene (I-Pp): polymerized dispersion and polymer characterization. Polymer 49(23):5053–5063

    Article  CAS  Google Scholar 

  14. De Rosa C, Auriemma F, Tarallo O, Di Girolamo R, Troisi EM, Esposito S, Liguori D, Piemontesi F, Vitale G, Morini G (2017) Tailoring the properties of polypropylene in the polymerization reactor using polymeric nucleating agents as Prepolymers on the Ziegler–Natta catalyst granule. Polym Chem 8(4):655–660

    Article  Google Scholar 

  15. Guo M, Zhang Y, Li J, Pan G, Yan H, Luo Y, Liu Y (2014) Ultrafine dispersion of a phosphate nucleating agent in a polypropylene matrix via the microemulsion method. RSC Adv 4(23)

  16. Yi Q, Wen XJ, Niu H, Dong J (2013) How does a polymerized compounding affect the nucleation effect of a sorbitol derivative nucleating agent in isotactic polypropylene melt crystallization? J Appl Polym Sci 127(2):888–903

    Article  CAS  Google Scholar 

  17. Hussain H, Shah SM (2014) Recent developments in nanostructured polyhedral Oligomeric Silsesquioxane-based materials via ‘controlled’ radical polymerization. Polym Int 63(5):835–847

    Article  CAS  Google Scholar 

  18. Raftopoulos KN, Pielichowski K (2016) Segmental dynamics in hybrid polymer/Poss Nanomaterials. Prog Polym Sci 52:136–187

    Article  CAS  Google Scholar 

  19. Durmus A, Kasgoz A, Ercan N, Akın D, Şanlı S (2012) Effect of polyhedral Oligomeric Silsesquioxane (Poss) reinforced polypropylene (Pp) Nanocomposite on the microstructure and isothermal crystallization kinetics of Polyoxymethylene (Pom). Polymer 53(23):5347–5357

    Article  CAS  Google Scholar 

  20. Misasi JM, Jin Q, Knauer KM, Morgan SE, Wiggins JS (2017) Hybrid Poss-Hyperbranched polymer additives for simultaneous reinforcement and toughness improvements in epoxy networks. Polymer 117:54–63

    Article  CAS  Google Scholar 

  21. Barczewski M, Czarnecka-Komorowska D, Andrzejewski J, Sterzynski T, Dutkiewicz M, Dudziec B (2013) Processing properties of thermoplastic polymers modified by polyhedral Oligomeric Silsesquioxanes (Poss). Polimery 58(10):805–815

    Article  CAS  Google Scholar 

  22. Mohamed MG, Hsu KC, Hong JL, Kuo SW (2016) Unexpected fluorescence from Maleimide-containing polyhedral Oligomeric Silsesquioxanes: nanoparticle and sequence distribution analyses of polystyrene-based alternating copolymers. Polym Chem 7(1):135–145

    Article  CAS  Google Scholar 

  23. Mohamed MG, Kuo SW (2019) Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites. Polymers 11(1):26

    Article  Google Scholar 

  24. Mohamed MG, Jheng YR, Yeh SL, Chen T, Kuo SW (2017) Unusual emission of polystyrene-based alternating copolymers incorporating Aminobutyl Maleimide Fluorophore-containing polyhedral Oligomeric Silsesquioxane nanoparticles. Polymers 9(3):103

    Article  Google Scholar 

  25. Shih H-K, Hsieh C-C, Mohamed MG, Zhu C-Y, Kuo S-W (2016) Ternary Polybenzoxazine/Poss/Swcnt hybrid Nanocomposites stabilized through Supramolecular interactions. Soft Matter 12(6):1847–1858

    Article  CAS  Google Scholar 

  26. Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral Oligomeric Silsesquioxane (Poss). J Mater Chem 22(5):1733–1746

    Article  CAS  Google Scholar 

  27. Mohamed MG, Kuo S-W (2016) Polybenzoxazine/polyhedral Oligomeric Silsesquioxane (Poss) Nanocomposites. Polymers 8(6):225

    Article  Google Scholar 

  28. Joshi M, Butola BS, Simon G, Kukaleva N (2006) Rheological and viscoelastic behavior of Hdpe Octamethyl-Poss Nanocomposites. Macromolecules 39:1839–1849

    Article  CAS  Google Scholar 

  29. Romo Uribe A, Reyes Mayer A, Paredes Pérez M, Lichtenhan J, Yañez Lino M, Sarmiento Bustos E (2019) Poss driven chain disentanglements, decreased the melt viscosity and reduced O2 transmission in polyethylene. Polymer 165:61–71

    Article  CAS  Google Scholar 

  30. Romo Uribe A (2018) Viscoelasticity and microstructure of Poss-methyl methacrylate Nanocomposites. Dyn Entanglement Dilution Polym 148:27–38

    CAS  Google Scholar 

  31. Zhang YF (2008) Crystallization and melting behaviors of isotactic polypropylene nucleated with compound nucleating agents. J Polym Sci B Polym Phys 46(9):911–916

    Article  CAS  Google Scholar 

  32. Handke B, Jastrzębski W, Mozgawa W, Kowalewska A (2008) Structural studies of crystalline Octamethylsilsesquioxane (Ch3)8si8o12−. J Mol Struct 887(1–3):159–164

    Article  CAS  Google Scholar 

  33. Zhang D, Shi Y, Liu Y, Huang G (2014) Influences of polyhedral Oligomeric Silsesquioxanes (Posss) containing different functional groups on crystallization and melting behaviors of Poss/Polydimethylsiloxane rubber composites. RSC Adv 4(78):41364–41370

    Article  CAS  Google Scholar 

  34. Barry AJ, Daudt WH, Domicone JJ, Gilkey JW (1955) Crystalline Organosilsesquioxanes. J Am Chem Soc 77(16):4248–4252

    Article  CAS  Google Scholar 

  35. Chen JH, Chiou YD (2006) Crystallization behavior and morphological development of isotactic polypropylene blended with nanostructured polyhedral Oligomeric Silsesquioxane molecules. J Polym Sci B Polym Phys 44(15):2122–2134

    Article  CAS  Google Scholar 

  36. Chen JH, Yao BX, Su WB, Yang YB (2007) Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral Oligomeric Silsesquioxane. Polymer 48(6):1756–1769

    Article  CAS  Google Scholar 

  37. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 37(3):568–575

    Article  CAS  Google Scholar 

  38. Rasana N, Jayanarayanan K, Pegoretti A (2018) Non-isothermal crystallization kinetics of polypropylene/short glass fibre/multiwalled carbon nanotube composites. RSC Adv 8(68):39127–39139

    Article  CAS  Google Scholar 

  39. Chai SC, Xu TY, Cao X, Wang G, Chen Q, Li HL (2019) Ultrasmall nanoparticles diluted chain entanglement in polymer Nanocomposites. Chin J Polym Sci 37:797–805

    Article  CAS  Google Scholar 

  40. Zhou Z, Zhang Y, Zhang Y, Yin N (2007) Rheological behavior of polypropylene/Octavinyl polyhedral Oligomeric Silsesquioxane composites. J Polym Sci B Polym Phys 46:526–533

    Article  Google Scholar 

  41. Nusser K, Schneider GJ, Pyckhout Hintzen W, Richter D (2011) Viscosity decrease and reinforcement in polymer–Silsesquioxane composites. Macromolecules 44(19):7820–7830

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grants 21878089 and 21606084), the National Key R&D Program of China (2016YFB0302201), the Fundamental Research Funds for the Central Universities (22221818010) and the National Natural Science Funds of China (Grant No. 21776079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.26 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, S., Meng, X. et al. The mechanical properties, crystallization and rheological behavior of isotactic polypropylene with nucleating agent supported on polyhedral oligomeric silsesquioxanes (POSS). J Polym Res 27, 303 (2020). https://doi.org/10.1007/s10965-020-02260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02260-9

Keywords

Navigation