Skip to main content
Log in

Reuse of kaolinitic waste as a precursor of pozzolanic material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The replacement of cement with supplementary cementitious materials has great potential for mitigating CO2 emissions, as it leads to a lesser clinker production. One of the materials that can be used as a precursor of pozzolanic material is the by-product of a Brazilian industrial beneficiation process of kaolin, which is considered as a kaolinitic waste (KW), but still having a high kaolinite content. The calcination of the waste forms a product (CKW) consisting largely of metakaolinite (MK), which pozzolanic activity is known. Thus, the objective of this work was to study the calcination of KW, to evaluate the pozzolanic activity of CKW in Portland cement type II (PC) pastes with cement substitution degrees of 10, 20 and 30%, chosen based on the results of compaction essays of CKW/PC dry mixtures. Hydration was evaluated using isothermal calorimetry and also through thermogravimetry (TG) of pastes at different times of hydration. From the calorimetric tests, it was observed that as the CKW content added to the pastes was increased, the hydration reactions were accelerated and the heat released in relation to the reference paste containing only cement with water was increased as well. Through the TG results, it was noted that the increase in the replacement content and hydration time generated a greater amount of hydrated products and a greater consumption of calcium hydroxide, due to the pozzolanic action of CKW. The compressive strength of the pastes was evaluated at 3 and 28 days of curing, observing that at 28 days all the substitutions presented resistances higher than that of the reference paste, with direct correlation with the degrees of compaction of respective dry PC/CKW mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Scrivener KL, John VM, Gartner EM. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res. 2018;114:2–26.

    Article  CAS  Google Scholar 

  2. WBCSD. Cement industry energy and CO2 performance: getting the numbers right (GNR). 2016.

  3. WBCSD and IEA. Cement Technology Roadmap. 2018

  4. Barata MS, Dal Molin DCC. Avaliação preliminar do resíduo caulinítico das indústrias de beneficiamento de caulim como matéria-prima na produção de uma metacaulinita altamente reativa. Ambient Construído. 2008;2:69–78.

    Google Scholar 

  5. Souza PSL, Dal Molin DCC. Viability of using calcined clays, from industrial by-products, as pozzolans of high reactivity. Cem Concr Res. 2005;35:1993–8.

    Article  CAS  Google Scholar 

  6. Tironi A, Trezza MA, Scian AN, Irassar EF. Assessment of pozzolanic activity of different calcined clays. Cem Concr Compos. 2013;37:319–27.

    Article  CAS  Google Scholar 

  7. Alujas A, Fernández R, Quintana R, Scrivener KL, Martirena F. Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci. 2015;108:94–101.

  8. Ambroise J, Maximilien S, Pera J. Properties of Metakaolin blended cements. Adv Cem Based Mater. 1994;1:161–8.

    Article  CAS  Google Scholar 

  9. Juenger MCG, Snellings R, Bernal SA. Supplementary cementitious materials: new sources, characterization, and performance insights. Cem Concr Res. 2019;122:257–73.

    Article  CAS  Google Scholar 

  10. Frías M, De Rojas MIS, Cabrera J. Effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cem Concr Res. 2000;30:209–16.

    Article  Google Scholar 

  11. Palou M, Kuzielová E, Žemlička M, Novotný R, Másilko J. The effect of metakaolin upon the formation of ettringite in metakaolin–lime–gypsum ternary systems. J Therm Anal Calorim. 2018;133:77–86.

    Article  CAS  Google Scholar 

  12. Badogiannis E, Kakali G, Tsivilis S. Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion. J Therm Anal Calorim. 2005;81:457–62.

    Article  CAS  Google Scholar 

  13. Da Cunha ALC, Gonçalves JP, Cartledge FK, Filho RDT, Dweck J. Evaluation of the metakaolin pozzolanic reactivity in cement pastes. Mater Sci Forum. 2008;591–593:827–32.

    Article  Google Scholar 

  14. Lagier F, Kurtis KE. Influence of Portland cement composition on early age reactions with metakaolin. Cem Concr Res. 2007;37:1411–7.

    Article  CAS  Google Scholar 

  15. Lima JM. Estudo de aproveitamento do resíduo de beneficiamento de caulim como matéria prima na produção de pozolanas para cimentos compostos e pozolânicos. MSc Thesis. Federal University of Pará; 2004.

  16. ABNT. NBR NM 18: Cimento Portland - Análise química - Determinação de perda ao fogo. Assoc Bras Normas Técnicas. 2012.

  17. ABNT. NBR 16372: Cimento Portland e outros materiais em pó - Determinação da finura pelo método de permeabilidade ao ar (método de Blaine). Assoc Bras Normas Técnicas. 2015.

  18. Norton FH. Introdução à Tecnologia Cerâmica. 2a Edição. Editora da Universidade de São Paulo; 1973.

  19. Dweck J, Melchert MBM, Viana MM, Cartledge FK, Büchler PM. Importance of quantitative thermogravimetry on initial cement mass basis to evaluate the hydration of cement pastes and mortars. J Therm Anal Calorim. 2013;113:1481–90.

    Article  CAS  Google Scholar 

  20. Neves Junior A, Dweck J, Filho RDT, Ellis B, Li V. Determination of CO2 capture during accelerated carbonation of engineered cementitious composite pastes by thermogravimetry. J Therm Anal Calorim. 2019;138:97–109.

  21. Grim RE. Clay mineralogy. 1a ed. New York: McGraw Hill; 1953.

    Google Scholar 

  22. Huang Y, Deng J, Wang W, Feng Q, Xu Z. Preliminary investigation of pozzolanic properties of calcined waste kaolin. Mater Sci. 2018;24:177–84.

    Google Scholar 

  23. Dweck J. Qualitative and quantitative characterization of Brazilian natural and organophilic clays by thermal analysis. J Therm Anal Calorim. 2008;92:129–35.

    Article  CAS  Google Scholar 

  24. Cordeiro GC. Utilização De Cinzas Ultrafinas Do Bagaço De Cana-De-Açúcar E Da Casca De Arroz Como Aditivos Minerais Em Concreto. PhD Thesis. Federal University of Rio de Janeiro; 2006.

  25. Feng Q, Yamamichi H, Shoya M, Sugita S. Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment. Cem Concr Res. 2004;34:521–6.

    Article  CAS  Google Scholar 

  26. Bobrowicz J, Chyli F. Waste or a valuable addition to Portland cement composites? 2020;1–15.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Luiza Ferreira Brito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, B.L.F., Dweck, J. Reuse of kaolinitic waste as a precursor of pozzolanic material. J Therm Anal Calorim 147, 6087–6097 (2022). https://doi.org/10.1007/s10973-021-10957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10957-2

Keywords

Navigation