Skip to main content
Log in

A comparative analysis of natural zeolites from various Cuban and Mexican deposits: structure, composition, thermal properties and hierarchical porosity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cuban and Mexican zeolites are of particular interest from economic outlook because of their exceptional properties and abundance. Here, we present the results of the comparative study of the elemental, structural, morphological, thermal and textural properties of natural zeolites: clinoptilolite, mordenite and erionite from various deposits. Despite a complex phase and element compositions of the studied materials, some general features were detected. The observed dehydration steps are related to water desorption from porosity of different size ranges: mesopores, main and small zeolite voids. This dehydration pattern interferes with the exchangeable cation composition that also affects the general trends. Thermochemical properties of samples are influenced by the geographical location of the deposits. Depending on the origin of the sample, the dehydration enthalpy varies in quite a wide range, which is a function of both zeolite framework structure and exchangeable cation composition. The study of meso- and macropore systems reveals that all the samples exhibit multimodal pore size distribution and possess significant amounts of mesoporosity and even macroporosity. Among the studied samples, the mordenite from Palmarito de Cauto, the clinoptilolite from Etla and the erionite from Agua Prieta (Sonora) have a significant number of pores with average size of about 3 nm. All the samples, except erionite from Agua Prieta, show macroporosity with rather well-defined pore size between 0.3 and 2 μm. The porosity over mass does not change noticeably from one sample to other and varies from 0.32 to 0.65 cm3 g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breck DW. Zeolite molecular sieves: structure, chemistry, and use. New York: Wiley; 1974. https://doi.org/10.1093/chromsci/13.4.18A-c.

    Book  Google Scholar 

  2. Wise WS. Handbook of natural zeolites. Napoli: De Frede Editore; 2013.

    Google Scholar 

  3. Elaiopoulos K, Perraki T, Grigoropoulou E. Mineralogical study and porosimetry measurements of zeolites from Scaloma area, Thrace Greece. Microporous Mesoporous Mater. 2008;112:441–9. https://doi.org/10.1016/j.micromeso.2007.10.021.

    Article  CAS  Google Scholar 

  4. Tito-Ferro D, Rodríguez-Iznaga I, Concepción-Rosabal B, Berlier G, Chávez-Rivas F, Penton-Madrigal A, et al. Iron exchanged natural mordenite: UV-Vis diffuse reflectance and Mossbauer spectroscopy characterisation. Int J Nanotechnol. 2016;13:112–25. https://doi.org/10.1504/IJNT.2016.074528.

    Article  CAS  Google Scholar 

  5. Chávez-Rivas F, Rodríguez-Fuentes G, Berlier G, Rodríguez-Iznaga I, Petranovskii V, Zamorano-Ulloa R, et al. Evidence for controlled insertion of Fe ions in the framework of clinoptilolite natural zeolites. Microporous Mesoporous Mater. 2013;167:76–81. https://doi.org/10.1016/j.micromeso.2012.04.001.

    Article  CAS  Google Scholar 

  6. Elaiopoulos K, Perraki T, Grigoropoulou E. Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis. Microporous Mesoporous Mater. 2010;134:29–43. https://doi.org/10.1016/j.micromeso.2010.05.004.

    Article  CAS  Google Scholar 

  7. Colella C, Wise WS. The IZA handbook of natural zeolites: a tool of knowledge on the most important family of porous minerals. Microporous Mesoporous Mater. 2014;189:4–10. https://doi.org/10.1016/j.micromeso.2013.08.028.

    Article  CAS  Google Scholar 

  8. Tsitsishvili GV, Andronikashvili TG, Kirov GR, Filizova LD. Natural zeolites. Chichester: Ellis Horwood Limited; 1992.

    Google Scholar 

  9. Alver BE, Sakizci M, Yörükoǧullari E. Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study. J Therm Anal Calorim. 2010;100:19–26. https://doi.org/10.1007/s10973-009-0118-0.

    Article  CAS  Google Scholar 

  10. Baerlocher C, McCusker LB, Olson DH. Atlas of zeolite framework types. 6th ed. Amsterdam: Elsevier; 2007.

    Google Scholar 

  11. Colella C. Natural zeolites in environmentally friendly processes and applications. Stud Surf Sci Catal. 1999;125:641–55. https://doi.org/10.1016/s0167-2991(99)80270-5.

    Article  CAS  Google Scholar 

  12. Mumpton FA. La roca magica: uses of natural zeolites in agriculture and industry. Proc Natl Acad Sci. 1999;96:3463–70. https://doi.org/10.1073/pnas.96.7.3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petranovskii V, Chaves-Rivas F, Hernandez Espinoza MA, Pestryakov A, Kolobova E. Potential uses of natural zeolites for the development of new materials: Short review. MATEC Web Conf. 2016;85:01014. https://doi.org/10.1051/matecconf/20168501014.

    Article  CAS  Google Scholar 

  14. Liu Z, Ottaviani MF, Abrams L, Lei X, Turro NJ. Characterization of the external surface of silicalites employing electron paramagnetic resonance. J Phys Chem A. 2004;108:8040–7. https://doi.org/10.1021/jp049275h.

    Article  CAS  Google Scholar 

  15. De Lange MF, Vlugt TJH, Gascon J, Kapteijn F. Adsorptive characterization of porous solids: error analysis guides the way. Microporous Mesoporous Mater. 2014;200:199–215. https://doi.org/10.1016/j.micromeso.2014.08.048.

    Article  CAS  Google Scholar 

  16. Itzel-Hernandez G, Hernandez MA, Portillo R, Petranovskii VP, Pestryakov AN, Rubio E. Hierarchical structure of nanoporosity of Mexican natural zeolites of clinoptilolite type. Bull Tomsk Polytech Univ Geo Assets Eng. 2018;329:107–17. https://doi.org/10.18799/24131830/2018/10/2110.

    Article  Google Scholar 

  17. Cai D, Xiong H, Zhang C, Wei F. Transport phenomena in zeolites in view of graph theory and pseudo-phase transition. Small. 2016. https://doi.org/10.1002/smll.201901979.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dziedzicka A, Sulikowski B, Ruggiero-Mikołajczyk M. Catalytic and physicochemical properties of modified natural clinoptilolite. Catal Today. 2016;259:50–8. https://doi.org/10.1016/j.cattod.2015.04.039.

    Article  CAS  Google Scholar 

  19. Rivas FC, Rodríguez-Iznaga I, Berlier G, Ferro DT, Concepción-Rosabal B, Petranovskii V. Fe speciation in iron modified natural zeolites as sustainable environmental catalysts. Catalysts. 2019;9:866. https://doi.org/10.3390/catal9100866.

    Article  CAS  Google Scholar 

  20. Petranovskii V, Pestryakov AN, Kazantseva LK, Cruz J, Kryazhov AN. Formation of catalytically active copper and nickel nanoparticles in natural zeolites. Stud Surf Sci Catal. 2008;174:513–6. https://doi.org/10.1016/S0167-2991(08)80252-2.

    Article  Google Scholar 

  21. Petranovskii VP, Pestryakov AN, Kazantseva LK, Castillon BF, Farias MH. Formation of catalytically active copper nanoparticles in natural zeolites for complete oxidation of hydrocarbons. Int J Mod Phys B. 2005;19:2333–8.

    Article  CAS  Google Scholar 

  22. Pepe F, de Gennaro B, Aprea P, Caputo D. Natural zeolites for heavy metals removal from aqueous solutions: modeling of the fixed bed Ba2+/Na+ ion-exchange process using a mixed phillipsite/chabazite-rich tuff. Chem Eng J. 2013;219:37–42. https://doi.org/10.1016/j.cej.2012.12.075.

    Article  CAS  Google Scholar 

  23. Rodríguez-Fuentes G, Rodríguez-Iznaga I, Boza A, Pérez A, Cedré B, Bravo-Fariñas L, et al. Evaluation of a zinc clinoptilolite (ZZ®) for drinking water treatment. In: Reisner DE, Pradeep T, editors., et al., Aquananotechnology glob prospect. CRC Pres: Boca Raton; 2014. p. 599–623.

    Google Scholar 

  24. Rodríguez-Iznaga I, Petranovskii V, Rodríguez-Fuentes G. Ion-exchange of amino- and aqua-complexes of nickel and cobalt in natural clinoptilolite. J Environ Chem Eng. 2014;2:1221–7. https://doi.org/10.1016/j.jece.2014.05.012.

    Article  CAS  Google Scholar 

  25. Córdova-Rodríguez V, Rodríguez-Iznaga I, Acosta-Chávez RM, Chávez-Rivas F, Petranovskii V, Pestryakov A. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters. J Environ Sci Health Part A. 2015;51:425–33.

    Article  Google Scholar 

  26. Rodríguez-Iznaga I, Rodríguez-Fuentes G, Petranovskii V. Ammonium modified natural clinoptilolite to remove manganese, cobalt and nickel ions from wastewater: favorable conditions to the modification and selectivity to the cations. Microporous Mesoporous Mater. 2018;255:200–10. https://doi.org/10.1016/j.micromeso.2017.07.034.

    Article  CAS  Google Scholar 

  27. Rodríguez-Fuentes G, Ávila-Garcia P, Rodríguez-Iznaga I, Rebollar-Barcelo M, Betancourt-Laza M, Concepción-Rosabal B, et al. Environmental remediation uses of honeycomb monoliths based on natural clinoptilolite. Stud Surf Sci Catal. 2004;154:2555–9.

    Article  Google Scholar 

  28. Misaelides P. Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater. 2011;144:15–8. https://doi.org/10.1016/j.micromeso.2011.03.024.

    Article  CAS  Google Scholar 

  29. Bacakova L, Vandrovcova M, Kopova I, Jirka I. Applications of zeolites in biotechnology and medicine-a review. Biomater Sci. 2018;6:974–89. https://doi.org/10.1039/c8bm00028j.

    Article  CAS  PubMed  Google Scholar 

  30. Pavelić SK, Medica JS, Gumbarević D, Filošević A, Pržulj N, Pavelić K. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front Pharmacol. 2018;9:1350. https://doi.org/10.3389/fphar.2018.01350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cerri G, Farina M, Brundu A, Daković A, Giunchedi P, Gavini E, et al. Natural zeolites for pharmaceutical formulations: preparation and evaluation of a clinoptilolite-based material. Microporous Mesoporous Mater. 2016;223:58–67. https://doi.org/10.1016/j.micromeso.2015.10.034.

    Article  CAS  Google Scholar 

  32. Göktaş S, Ülkü S, Bayraktar O. Clinoptilolite-rich mineral as a novel carrier for the active constituents present in Ginkgo biloba leaf extract. Appl Clay Sci. 2008;40:6–14. https://doi.org/10.1016/j.clay.2007.06.008.

    Article  CAS  Google Scholar 

  33. Hernández MÁ, Rojas F, Portillo R, Salgado MA, Petranovskii V, Quiroz K. Textural properties of hybrid biomedical materials made from extracts of Tournefortia hirsutissima L. Imbibed and deposited on mesoporous and microporous materials. J Nanomater. 2016. https://doi.org/10.1155/2016/1274817.

    Article  Google Scholar 

  34. Hernández MA, Corona L, Rojas F. Adsorption characteristics of natural erionite, clinoptilolite and mordenite zeolites from Mexico. Adsorption. 2000;6:33–45. https://doi.org/10.1023/A:1008943031277.

    Article  Google Scholar 

  35. Zvereva I, Kremnev R, Sirotov V, Rodríguez-Iznaga I, Hernández M-A, Petranovskii V. Thermal analysis and porosimetry of natural zeolites from Mexican and Cuban deposits. Appl Sol State Chem. 2017;1:35–41. https://doi.org/10.18572/2619-0141-2017-1-1-35-41.

    Article  Google Scholar 

  36. Volfkovich YM, Bagotzky VS, Sosenkin VE, Blinov IA. The standard contact porosimetry. Coll SurfA Physicochem Eng Asp. 2001;187–188:349–65. https://doi.org/10.1016/S0927-7757(01)00650-1.

    Article  Google Scholar 

  37. Rodríguez-Fuentes G, Rodríguez-Iznaga I. Caracterización del mineral zeolítico para el desarrollo de materiales nanoestructurados. Rev Cuba Física. 2009;26:55–60.

    Google Scholar 

  38. Zhukov YM, Shelyapina MG, Zvereva IA, Efimov AY, Petranovskii V. Microwave assisted versus convention Cu2+ exchange in mordenite. Microporous Mesoporous Mater. 2018;259:220–8. https://doi.org/10.1016/j.micromeso.2017.10.013.

    Article  CAS  Google Scholar 

  39. Shelyapina MG, Krylova EA, Zhukov YM, Zvereva IA, Rodriguez-Iznaga I, Petranovskii V, et al. Comprehensive analysis of the copper exchange implemented in ammonia and protonated forms of mordenite using microwave and conventional methods. Molecules. 2019;24:4216. https://doi.org/10.3390/molecules24234216.

    Article  CAS  PubMed Central  Google Scholar 

  40. Panek R, Wdowin M, Franus W. The use of scanning electron microscopy to identify zeolite minerals. Springer Proc Phys. 2014;154:45–50. https://doi.org/10.1007/978-3-319-04639-6.

    Article  CAS  Google Scholar 

  41. Trník A, Scheinherrová L, Medveď I, Černý R. Simultaneous DSC and TG analysis of high-performance concrete containing natural zeolite as a supplementary cementitious material. J Therm Anal Calorim. 2015;121:67–73. https://doi.org/10.1007/s10973-015-4546-8.

    Article  CAS  Google Scholar 

  42. Krylova EA, Shelyapina MG, Nowak P, Harańczyk H, Chislov M, Zvereva IA, et al. Mobility of water molecules in sodium- and copper-exchanged mordenites: thermal analysis and 1H NMR. Microporous Mesoporous Mater. 2018;265:132–42. https://doi.org/10.1016/j.micromeso.2018.02.010.

    Article  CAS  Google Scholar 

  43. Hernández MA, Rojas F, Portillo R, Salgado MA, Rubio E, Sánchez A, et al. Creating nanoporosity in Na, Ca and Mg exchanged erionite zeolite. Int J Nanotechnol. 2016;13:26–40. https://doi.org/10.1504/IJNT.2016.074521.

    Article  Google Scholar 

  44. Hernández MA, Rojas F, Lara VH. Nitrogen-sorption characterization of the microporous structure of clinoptilolite-type zeolites. J Porous Mater. 2000;7:443–54. https://doi.org/10.1023/A:1009662408173.

    Article  Google Scholar 

Download references

Acknowledgements

The studies were carried out at the Research Park of Saint Petersburg State University: Centre for X-ray Diffraction Studies, Centre of Thermal Analysis and Calorimetry and Interdisciplinary Resource Centre for Nanotechnology. This work was supported by the Russian Foundation for Basic Research and Ministerio de Ciencia, Tecnología y Medio Ambiente de Cuba (RFBR-CITMA) project No. 18-53-34004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina G. Shelyapina.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvereva, I.A., Shelyapina, M.G., Chislov, M. et al. A comparative analysis of natural zeolites from various Cuban and Mexican deposits: structure, composition, thermal properties and hierarchical porosity. J Therm Anal Calorim 147, 6147–6159 (2022). https://doi.org/10.1007/s10973-021-10947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10947-4

Keywords

Navigation