Skip to main content
Log in

Investigation of the electrocaloric effect in BaTiO3 multilayers by pASC calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The electrocaloric heat production in \(\hbox {BaTiO}_3\)-based multilayer ceramic capacitors with Y5V specification was measured in a direct way by means of an adiabatic calorimeter setup. Applying an electric field of 30 \(\hbox {MV}\,\hbox {m}^{-1}\) is found to result in a heat release of 0.94 \(\hbox {J}\,\hbox {g}^{-1}\) and an electrocaloric temperature change of 0.46 K, in good agreement with direct results in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Srikanth KS, Vaish R. Enhanced electrocaloric, pyroelectric and energy storage performance of \(\text{ BaCe}_x\text{ Ti}_{1-x}\text{ O}_3\) ceramics. J Eur Ceram. 2017;37:3927–33.

    Article  CAS  Google Scholar 

  2. Patel S, Chauhan A, Vaish R. Large room temperature electrocaloric strength in bulk ferroelectric ceramics: an optimum solution. Phase Transit. 2015;89:1019–28.

    Article  Google Scholar 

  3. Asbani B, Dellis JL, Lahmar A, Courty M, Amjoud M, Gagou Y, Djellab K, Mezzane D, Kutnjak Z, El Marssi M. Lead-free \(\text{ Ba}_{0.8}\text{ Ca}_{0.2}\text{ Zr}_x\text{ Ti}_{1-x}\text{ O}_3\) ceramics with large electrocaloric effect. Appl Phys Lett. 2015;106:042902.

    Article  Google Scholar 

  4. Valant M. Electrocaloric materials for future solid-state refrigeration technologies. Prog Mater Sci. 2012;57:980–1009.

    Article  CAS  Google Scholar 

  5. Kar-Narayan S, Mathur ND. Direct and indirect electrocaloric measurements using multilayer capacitors. J Phys D Appl Phys. 2010;43:032002.

    Article  Google Scholar 

  6. Lu SG, Rožič B, Zhang QM, Kutnjak Z, Pirc R, Lin M, Li X, Gorny L. Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl Phys Lett. 2010;97:202901.

    Article  Google Scholar 

  7. Bsaibess E, Longuemart S, Soueidan M, Nsouli B, Hadj SA. A photopyroelectric approach for electrocaloric effect characterization of polar materials. J Phys D Appl Phys. 2018;51:025306.

    Article  Google Scholar 

  8. Le Goupil F, Berenov A, Axelsson AK, Valant M, Neil MA. Direct and indirect electrocaloric measurements on 001-\(\text{ PbMg}_{1/3}\text{ Nb}_{2/3}\text{ O}_3\)-30\(\text{ PbTiO}_3\) single crystals. J Appl Phys. 2012;111:124109.

    Article  Google Scholar 

  9. Leys J, Duponchel B, Longuemart S, Glorieux C, Thoen J. A new calorimetric technique for phase change materials and its application to alkane-based PCMs. Mater Renew Sustain Energy. 2016;5:1–16.

    Article  Google Scholar 

  10. Sebald G, Seveyrat L, Capsal JF, Cottinet PJ, Guyomar D. Differential scanning calorimeter and infrared imaging for electrocaloric characterization of poly (vinylidene fluoride-trifluoroethylenechlorofluoroethylene) terpolymer. Appl Phys Lett. 2012;101:022907.

    Article  Google Scholar 

  11. Rožič B, Uršič H, Vrabelj M, Holc J, Malič B, Kutnjak Z. Electrocaloric response in substrate-free PMN-0.30PT thick films. Ferroelectrics. 2014;465:1–6.

    Article  Google Scholar 

  12. Molin C, Peräntie J, Le Goupil F, Weyland F, Sanlialp M, Stingelin N, Novak N, Lupascu DC, Gebhardt S. Comparison of direct electrocaloric characterization methods exemplified by 0.92 \(\text{ Pb }(\text{ Mg}_{1/3}\text{ Nb}_{2/3})\text{ O}_3\)-0.08 \(\text{ PbTiO}_3\) multilayer ceramics. J Am Ceram Soc. 2017;100:2885–92.

    Article  CAS  Google Scholar 

  13. Koruza J, Rožič B, Cordoyiannis G, Malič B, Kutnjak Z. Large electrocaloric effect in lead-free \(\text{ K}_{0.5}\text{ Na}_{0.5}\text{ NbO}_{3}\)-\(\text{ SrTiO}_{3}\) ceramics. Appl Phys Lett. 2015;106:202905.

    Article  Google Scholar 

  14. Bai Y, Ding K, Zheng GP, Shi SQ, Qiao L. Entropy-change measurement of electrocaloric effect of \(\text{ BaTiO}_3\) single crystal. Phys Status Solidi (a). 2012;209:941–4.

    Article  CAS  Google Scholar 

  15. Bai Y, Zheng G, Shi S. Direct measurement of giant electrocaloric effect in \(\text{ BaTiO}_3\) multilayer thick film structure beyond theoretical prediction. Appl Phys Lett. 2010;96:1–4.

    Google Scholar 

  16. Losada-Pérez P, Mertens N, de Medio-Vasconcelos B, Slenders E, Leys J, Peeters M, van Grinsven B, Gruber J, Glorieux C, Pfeiffer H, Wagner P, Thoen J. Phase transitions of binary lipid mixtures: a combined study by adiabatic scanning calorimetry and quartz crystal microbalance with dissipation monitoring. Adv condens Matter Phys. 2015;4:1–14.

    Article  Google Scholar 

  17. Leys J, Losada-Pérez P, Glorieux C, Thoen J. Application of a novel type of adiabatic scanning calorimeter for high-resolution thermal data near the melting point of gallium. J Therm Anal Calorim. 2014;177:173.

    Article  Google Scholar 

  18. Thoen J. High Resolution adiabatic scanning calorimetry and heat capacities. In: Wilhelm E, Letcher TM, editors. Heat capacities: liquids, solutions and vapours. London: The Royal Society of Chemistry; 2010.

    Google Scholar 

  19. Fraden J. Handbook of modern sensors: physics, designs, and applications. New York: Springer; 2004.

    Google Scholar 

  20. Steinhart John S, Hart Stanley R. Calibration curves for thermistors. Deep Sea Res Oceanorapic Abstr. 1968;15:497–503.

    Article  Google Scholar 

  21. Kar-Narayan S, Mathur ND. Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials. Appl Phys Lett. 2009;95:242903.

    Article  Google Scholar 

  22. Wang J, Jin K, Yao H, Gu J, Xu X, Ge C, Wang C, He M, Yang G. Temperature-dependent phase transition in barium titanate crystals probed by second harmonic generation. Appl Phys Lett. 2018;112:102904.

    Article  Google Scholar 

  23. Kar-Narayan S, Crossley S, Moya X, Kovacova V, Abergel J, Bontempi A, Baier N, Defay E, Mathur ND. Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging. Appl Phys Lett. 2013;102:032903.

    Article  Google Scholar 

  24. Kartashev AV, Bondarev VS, Flerov IN, Gorev MV, Pogoreltsev EI, Shabanov AV, Molokeev MS, Guillemet-Fritsch S, Raevskii IP. Study of the physical properties and electrocaloric effect in the \(\text{ BaTiO}_3\) nano- and microceramics. Phys Solid State. 2019;61:1052–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Pole Metropolitain de la Côte d’Opale, Université du Littoral Côte d’Opale for the support of this work. CG and JT acknowledge financial support of KU Leuven (C1 project C14/16/063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane Bsaibess.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bsaibess, E., Sahraoui, A.H., Glorieux, C. et al. Investigation of the electrocaloric effect in BaTiO3 multilayers by pASC calorimetry. J Therm Anal Calorim 147, 4837–4843 (2022). https://doi.org/10.1007/s10973-021-10881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10881-5

Keywords

Navigation