Skip to main content
Log in

Application of a novel type of adiabatic scanning calorimeter for high-resolution thermal data near the melting point of gallium

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel type of adiabatic scanning calorimeter (ASC) based on Peltier elements (PEs) is used to obtain high-resolution enthalpy and heat capacity data on the melting transition of gallium. The accuracy of the specific heat capacity and specific enthalpy is about 2 %, for a sub-mK temperature resolution. The simultaneously determined equilibrium specific heat capacity and specific enthalpy are used to determine the heat of fusion and the purity. In addition, the use of the PE-based ASC as a classical heat step calorimeter and as a constant rate (DSC-type) calorimeter is discussed. A comparison of the ASC results with literature data and DSC data shows the advantages of ASC for the study of phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The effective C p during a phase transition with a large transition heat in an ASC run is in principle infinite, as \(C_{\text{p}} \sim 1/\dot{T}\), and \(\dot{T} \approx 0\). The actual maximum achieved in this calculation was about \(5.5\times 10^6\hbox{ J g}^{-1}\hbox{ K}^{-1}\), or \(1.3\times 10^5\hbox{ J K}^{-1}\) for C tot as depicted in Fig. 6.

References

  1. Rossini FD. Chemical thermodynamics. New York: Wiley; 1950.

    Google Scholar 

  2. Jakobi R, Gmelin E, Ripka K. High-precision adiabatic calorimetry and the specific heat of cyclopentane at low temperature. J. Therm. Anal. 1993;40(3):871–6. doi:10.1007/BF02546845.

    Article  CAS  Google Scholar 

  3. Archer DG, Kirklin DR. NIST and standards for calorimetry. Thermochim. Acta 2000;347(1–2):21–30. doi:10.1016/S0040-6031(99)00426-8.

    Article  CAS  Google Scholar 

  4. Schnelle W, Gmelin E. Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control. Thermochim. Acta 2002;391(1–2):41–9. doi:10.1016/S0040-6031(02)00162-4.

    Article  CAS  Google Scholar 

  5. Watson ES, O’Neill MJ, Justin J, Brenner N. A differential scanning calorimeter for quantitative differential thermal analysis. Anal. Chem. 1964;36(7):1233–8. doi:10.1021/ac60213a019.

    Article  CAS  Google Scholar 

  6. O’Neill MJ. The analysis of a temperature-controlled scanning calorimeter. Anal. Chem. 1964;36(7):1238–45. doi:10.1021/ac60213a020.

    Article  Google Scholar 

  7. Watson ES, O’Neill MJ. Differential microcalorimeter. US Patent 3,263,484;1966.

  8. Wunderlich B. Thermal analysis. New York: Academic Press; 1990.

    Google Scholar 

  9. Sullivan PF, Seidel G. Steady-state, ac-temperature calorimetry. Phys. Rev. 1968;173(3):679–85. doi:10.1103/PhysRev.173.679.

    Article  CAS  Google Scholar 

  10. Garland CW. High-resolution ac calorimetry and critical behavior at phase transitions. Thermochim. Acta 1985;88(1):127–42. doi:10.1016/0040-6031(85)85420-4.

    Article  CAS  Google Scholar 

  11. Birge N, Nagel SR. Specific-heat spectroscopy of the glass transition. Phys. Rev. Lett. 1985;54(25):2674–7. doi:10.1103/PhysRevLett.54.2674.

    Article  CAS  Google Scholar 

  12. Thoen J, Glorieux C. Photothermal techniques for heat capacities. In: Wilhelm E, Letcher TM, editors. Heat capacities: liquids, solutions and vapours. London: Royal Society of Chemistry; 2010. p. 264–86. doi:10.1039/9781847559791-00264.

    Chapter  Google Scholar 

  13. Marinelli M, Mercuri F, Zammit U. Heat capacity in liquid crystals. In: Wilhelm E, Letcher TM, editors. Heat capacities: liquids, solutions and vapours. London: Royal Society of Chemistry; 2010. p. 367–89. doi:10.1039/9781847559791-00367.

    Chapter  Google Scholar 

  14. Jung DH, Moon IK, Jeong YH. Peltier AC calorimeter. Thermochim. Acta 2002;391(1–2):7–12. doi:10.1016/S0040-6031(02)00159-4.

    Article  CAS  Google Scholar 

  15. Yun YJ, Jung DH, Moon IK, Jeong YH. Peltier tip calorimeter. Rev. Sci. Instrum. 2006;77(6):064,901. doi:10.1063/1.2204584.

    Article  Google Scholar 

  16. Thoen J, Bloemen E, Van Dael W. Heat capacity of the binary liquid system triethylamine–water near the critical solution point. J. Chem. Phys. 1978;68(2):735–44. doi:10.1063/1.435746.

    Article  CAS  Google Scholar 

  17. Bloemen E, Thoen J, Van Dael W. The specific heat anomaly in triethylamine–heavy water near the critical solution point. J. Chem. Phys. 1980;73(9):4628–35. doi:10.1063/1.440702.

    Article  CAS  Google Scholar 

  18. Bloemen E, Thoen J, Van Dael W. The specific heat anomaly in some ternary liquid mixtures near a critical solution point. J. Chem. Phys. 1981;75(3):1488–95. doi:10.1063/1.442155.

    Article  CAS  Google Scholar 

  19. Thoen J, Bloemen E, Marynissen H, Van Dael W. High-resolution calorimetric investigation of phase transitions in liquids. In: Proceedings of the 8th Symposium on Thermophysical Properties. New York: American Society of Mechanical Engineers (ASME); 1982. p. 422.

  20. Thoen J, Marynissen H, Van Dael W. Temperature dependence of the enthalpy and the heat capacity of the liquid-crystal octylcyanobiphenyl (8CB). Phys. Rev. A 1982;26(5):2886–905. doi:10.1103/PhysRevA.26.2886.

    Article  CAS  Google Scholar 

  21. Thoen J. Thermal investigations of phase transitions in thermotropic liquid crystals. Int. J. Mod. Phys. B 1995;9(18–19):2157–218. doi:10.1142/S0217979295000860.

    Article  CAS  Google Scholar 

  22. Thoen J, Cordoyiannis G, Glorieux C. Investigations of phase transitions in liquid crystals by means of adiabatic scanning calorimetry. Liq. Cryst. 2009;36(6–7):669–84. doi:10.1080/02678290902755564.

    Article  CAS  Google Scholar 

  23. Thoen J. High resolution adiabatic scanning calorimetry and heat capacities. In: Wilhelm E, Letcher TM, editors. Heat capacities: liquids, solutions and vapours. London: Royal Society of Chemistry; 2010. p. 287–306. doi:10.1039/9781847559791-00287.

    Chapter  Google Scholar 

  24. Thoen J, Leys J, Glorieux C. Adiabatic scanning calorimeter. Int. Appl. PCT/BE2011/000042, filed July 2010, patents pending.

  25. Atkins P. Physical chemistry. 6th ed. Oxford: Oxford University Press; 1998.

    Google Scholar 

  26. ASTM: E928–08 Standard test method for determination of purity by differential scanning calorimetry. 2008. doi:10.1520/E0928-08.

  27. Mastrangelo SVR, Dornte RW. Solid solutions treatment of calorimetric purity data. J. Am. Chem. Soc. 1955;77(23):6200–01. doi:10.1021/ja01628a037.

    Article  CAS  Google Scholar 

  28. Boitard É, Bros JP, Laffitte M. Chaleur spécifique du gallium au voisinage du point de fusion. J. Chim. Phys. Phys. Chim. Biol. 1969;66(1):166–70.

    CAS  Google Scholar 

  29. Adams GB, Johnston HL, Kerr EC. The heat capacity of gallium from 15 to 320°K. The heat of fusion at the melting point. J. Am. Chem. Soc. 1952;74(19):4784–7. doi:10.1021/ja01139a017.

    Article  CAS  Google Scholar 

  30. Amitin EB, Minenkov YF, Nabutovskaya OA, Paukov IE, Sokolova SI. Thermodynamic properties of gallium from 5 to 320 K. J. Chem. Thermodyn. 1984;16(5):431–6. doi:10.1016/0021-9614(84)90199-X.

    Article  CAS  Google Scholar 

  31. Archer DG. The enthalpy of fusion of gallium. J. Chem. Eng. Data 2002;47(2):304–9. doi:10.1021/je015532p.

    Article  CAS  Google Scholar 

  32. Drebushchak VA. Thermophysical theory of DSC melting peak. J. Therm. Anal. Cal. 2012;109(2):545–53. doi:10.1007/s10973-012-2216-7.

    Article  CAS  Google Scholar 

  33. Minohara M, Tozaki K, Hayashi H, Inaba H. Effect of the magnetic field on the melting transition of Ga and In by nW-stabilized DSC. J. Therm. Anal. Cal. 2006;86(3):833–7. doi:10.1007/s10973-005-7134-5.

    Article  CAS  Google Scholar 

  34. NIST: NIST chemistry WebBook. http://webbook.nist.gov/cgi/cbook.cgi?ID=C7440553. Accessed 25 Sept 2013.

  35. Lavut EG, Chelovskaya NV. Design and testing of a hybrid of isoperibol and phase-change calorimeters for measurements of the enthalpies of reactions requiring prolonged heating. J. Chem. Thermodyn. 1995;27(12):1341–8. doi:10.1006/jcht.1995.0143.

    Article  CAS  Google Scholar 

  36. Frenkel J. A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys. 1939;7(7):538–47. doi:10.1063/1.1750484.

    Article  CAS  Google Scholar 

  37. Kristensen JK, Cotterill RMJ. On the existence of pre-melting and after-melting effects: a neutron scattering investigation. Philos. Mag. 1977;36(2):437–52. doi:10.1080/14786437708244946.

    Article  CAS  Google Scholar 

  38. Bolling GF. On the average large-angle grain boundary. Acta Metall. 1968;16(9):1147–57 doi:10.1016/0001-6160(68)90049-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jeroen Sniekers (Department of Chemistry, KU Leuven) for the DSC measurements. This research is supported by the FWO research project—G.0492.10; the FWO research project—G.0360.09; and the KU Leuven research project—OT/11/064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Leys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leys, J., Losada-Pérez, P., Glorieux, C. et al. Application of a novel type of adiabatic scanning calorimeter for high-resolution thermal data near the melting point of gallium. J Therm Anal Calorim 117, 173–187 (2014). https://doi.org/10.1007/s10973-014-3654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3654-1

Keywords

Navigation