Skip to main content
Log in

Synthesis and characterization of phosphorus-based flame retardant containing rigid polyurethane foam

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel compound (bis(3-hydroxyaminophenyl) phenyl phosphine oxide) (BHAPPO) was synthesized as a flame retardant based on bisphosphoramide structure. Rigid polyurethane foam (RPUF) formulations were prepared with different BHAPPO and ammonium polyphosphate (APP) content to investigate both flame retardant property of BHAPPO and the possible synergistic effect of BHAPPO and APP against RPUFs. FT-IR, 1H-NMR and 31P-NMR spectroscopy analysis confirmed the expected structure of BHAPPO. Flame retardancy and thermal degradation behavior of RPUFs were determined by limiting oxygen index (LOI) test and thermogravimetric analysis (TGA). The flame retardant property of novel BHAPPO against the prepared RPUF samples was confirmed. The synergetic effect of BHAPPO and APP combination both on reducing the flammability and enhancing the char formation of RPUFs was also confirmed with a dependence on their ratio. The compatibility effect of BHAPPO on mechanical and morphological properties of RPUFs was also investigated by compression test and SEM analysis. Fire behaviors and the effect of using flame retardant additives in polyurethane foam were investigated using a cone calorimeter. Carbon dioxide amount was found lower for flame retardant PU foam.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tang Z, Maroto-Valer MM, Andrésen JM, Miller JW, Listemann ML, McDaniel PL, et al. Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents. Polymer. 2002;43(24):6471–9.

    Article  CAS  Google Scholar 

  2. Hatakeyama H, Matsumura H, Hatakeyama T. Glass transition and thermal degradation of rigid polyurethane foams derived from castor oil–molasses polyols. J Therm Anal Calorim. 2013;111(2):1545–52.

    Article  CAS  Google Scholar 

  3. Xu W, Wang G, Zheng X. Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants. Polym Degrad Stab. 2015;111:142–50.

    Article  CAS  Google Scholar 

  4. Cao Z-J, Dong X, Fu T, Deng S-B, Liao W, Wang Y-Z. Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams. Polym Degrad Stab. 2017;136:103–11.

  5. Yang R, Wang B, Han X, Ma B, Li J. Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate. Polym Degrad Stab. 2017;144:62–9.

    Article  CAS  Google Scholar 

  6. Jelle BP. Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy Build. 2011;43(10):2549–63.

    Article  Google Scholar 

  7. Chen Y, Jia Z, Luo Y, Jia D, Li B. Environmentally friendly flame-retardant and its application in rigid polyurethane foam. Int J Polym Sci. 2014;2014:7.

    Google Scholar 

  8. Huo S, Wu G, Chen J, Liu G, Kong Z. Constructing polyurethane foams of strong mechanical property and thermostability by two novel environment friendly bio-based polyols. Korean J Chem Eng. 2016;33(3):1088–94.

    Article  CAS  Google Scholar 

  9. Xi W, Qian L, Huang Z, Cao Y, Li L. Continuous flame-retardant actions of two phosphate esters with expandable graphite in rigid polyurethane foams. Polym Degrad Stab. 2016;130:97–102.

    Article  CAS  Google Scholar 

  10. Rao W-H, Zhu Z-M, Wang S-X, Wang T, Tan Y, Liao W, et al. A reactive phosphorus-containing polyol incorporated into flexible polyurethane foam: Self-extinguishing behavior and mechanism. Polym Degrad Stab. 2018;153:192–200.

    Article  CAS  Google Scholar 

  11. Wu D-H, Zhao P-H, Liu Y-Q, Liu X-Y, Wang X-f. Halogen Free flame retardant rigid polyurethane foam with a novel phosphorus−nitrogen intumescent flame retardant. J Appl Polym Sci. 2014;131(11).

  12. Xu Z, Tang X, Zheng J. Thermal stability and flame retardancy of rigid polyurethane foams/organoclay nanocomposites. Polym-Plast Technol Eng. 2008;47(11):1136–41.

    Article  CAS  Google Scholar 

  13. Wang Z, Li X. Mechanical properties and flame retardancy of rigid polyurethane foams containing SiO2 nanospheres/graphene oxide hybrid and dimethyl methylphosphonate. Polym-Plast Technol Eng. 2018;57(9):884–92.

    Article  CAS  Google Scholar 

  14. Weil ED, Levchik SV. Commercial Flame Retardancy of Polyurethanes. J Fire Sci. 2004;22(3):183–210.

    Article  CAS  Google Scholar 

  15. Daniel YG, Howell BA. Flame retardant properties of isosorbide bis-phosphorus esters. Polym Degrad Stab. 2017;140:25–31.

    Article  CAS  Google Scholar 

  16. Wu D, Zhao P, Liu Y. Flame retardant property of novel intumescent flame retardant rigid polyurethane foams. Polym Eng Sci. 2013;53(11):2478–85.

    Article  CAS  Google Scholar 

  17. Yin X, Luo Y, Zhang J. Synthesis and characterization of halogen-free flame retardant two-component waterborne polyurethane by different modification. Ind Eng Chem Res. 2017;56(7):1791–802.

    Article  CAS  Google Scholar 

  18. Papa AJ. Reactive Flame Retardants for Polyurethane Foams. Product R&D. 1970;9(4):478–96.

    Article  CAS  Google Scholar 

  19. Zhang Y, Shang S, Zhang X, Wang D, Hourston DJ. Influence of the composition of rosin-based rigid polyurethane foams on their thermal stability. J Appl Polym Sci. 1996;59(7):1167–71.

    Article  CAS  Google Scholar 

  20. Cunningham RL, Gordon SH, Felker FC, Eskins K. Glycols in polyurethane foam formulations with a starch–oil composite. J Appl Polym Sci. 1998;69(5):957–64.

    Article  CAS  Google Scholar 

  21. Chen X, Wu H, Luo Z, Yang B, Guo S, Yu J. Synergistic effects of expandable graphite with magnesium hydroxide on the flame retardancy and thermal properties of polypropylene. Polym Eng Sci. 2007;47(11):1756–60.

    Article  CAS  Google Scholar 

  22. Shi L, Li Z-M, Yang M-B, Yin B, Zhou Q-M, Tian C-R, et al. Expandable graphite for halogen-free flame-retardant of high-density rigid polyurethane foams. Polym-Plast Technol Eng. 2005;44(7):1323–37.

    Article  CAS  Google Scholar 

  23. Modesti M, Lorenzetti A. Halogen-free flame retardants for polymeric foams. Polym Degrad Stab. 2002;78(1):167–73.

    Article  CAS  Google Scholar 

  24. Chung Y-j, Kim Y, Kim S. Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers (II). J Ind Eng Chem. 2009;15(6):888–93.

    Article  CAS  Google Scholar 

  25. Noreen A, Zia KM, Zuber M, Tabasum S, Saif MJ. Recent trends in environmentally friendly water-borne polyurethane coatings: A review. Korean J Chem Eng. 2016;33(2):388–400.

    Article  CAS  Google Scholar 

  26. Gu L, luo Y. Flame retardancy and thermal decomposition of phosphorus-containing waterborne polyurethanes modified by halogen-free flame retardants. Ind Eng Chem Res. 2015;54(9):2431–8.

    Article  CAS  Google Scholar 

  27. Ma S, Xiao Y, Zhou F, Schartel B, Chan YY, Korobeinichev OP, et al. Effects of novel phosphorus-nitrogen-containing DOPO derivative salts on mechanical properties, thermal stability and flame retardancy of flexible polyurethane foam. Polym Degrad Stab. 2020;177:109160.

    Article  CAS  Google Scholar 

  28. Zhang Y, Wang B, Yuan B, Yuan Y, Liew KM, Song L, et al. Preparation of large-size reduced graphene oxide-wrapped ammonium polyphosphate and its enhancement of the mechanical and flame retardant properties of thermoplastic polyurethane. Ind Eng Chem Res. 2017;56(26):7468–77.

    Article  CAS  Google Scholar 

  29. Jin J, Dong Q-x, Shu Z-j, Wang W-j, He K. Flame retardant properties of polyurethane/expandable praphite composites. Procedia Eng. 2014;71:304–9.

    Article  CAS  Google Scholar 

  30. Luo F, Wu K, Lu M, Nie S, Li X, Guan X. Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam. J Therm Anal Calorim. 2015;120(2):1327–35.

    Article  CAS  Google Scholar 

  31. Meng X-Y, Ye L, Zhang X-G, Tang P-M, Tang J-H, Ji X, et al. Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foams. J Appl Polym Sci. 2009;114(2):853–63.

    Article  CAS  Google Scholar 

  32. Zhang M, Luo Z, Zhang J, Chen S, Zhou Y. Effects of a novel phosphorus–nitrogen flame retardant on rosin-based rigid polyurethane foams. Polym Degrad Stab. 2015;120:427–34.

    Article  CAS  Google Scholar 

  33. Xing W, Yang W, Yang W, Hu Q, Si J, Lu H, et al. Functionalized carbon nanotubes with phosphorus- and nitrogen-containing agents: Effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites. ACS Appl Mater Interfaces. 2016;8(39):26266–74.

    Article  CAS  Google Scholar 

  34. Yuan Y, Yang H, Yu B, Shi Y, Wang W, Song L, et al. Phosphorus and nitrogen-containing polyols: Synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind Eng Chem Res. 2016;55(41):10813–22.

    Article  CAS  Google Scholar 

  35. Zhao Q, Chen C, Fan R, Yuan Y, Xing Y, Ma X. Halogen-free flame-retardant rigid polyurethane foam with a nitrogen–phosphorus flame retardant. J Fire Sci. 2017;35(2):99–117.

    Article  CAS  Google Scholar 

  36. Michałowski S, Pielichowski K. 1,2-Propanediolizobutyl POSS as a co-flame retardant for rigid polyurethane foams. J Therm Anal Calorim. 2018;134(2):1351–8.

    Article  Google Scholar 

  37. Han S, Zhu X, Chen F, Chen S, Liu H. Flame-retardant system for rigid polyurethane foams based on diethyl bis(2-hydroxyethyl)aminomethylphosphonate and in-situ exfoliated clay. Polym Degrad Stab. 2020;177:109178.

    Article  CAS  Google Scholar 

  38. Mishra VK, Patel RH. Synthesis and characterization of flame retardant polyurethane: Effect of castor oil polyurethane on its properties. Polym Degrad Stab. 2020;175:109132.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ersin Serhatlı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çalışkan, E., Çanak, T.Ç., Karahasanoğlu, M. et al. Synthesis and characterization of phosphorus-based flame retardant containing rigid polyurethane foam. J Therm Anal Calorim 147, 4119–4129 (2022). https://doi.org/10.1007/s10973-021-10837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10837-9

Keywords

Navigation