Skip to main content
Log in

Study of thermophysical properties of moist and salt crystallized fired clay bricks for energy saving perspective

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study investigated the thermophysical properties of moist and salt crystallized fired clay bricks for energy saving perspective. A transient plane source technique was used to study these properties under ambient conditions. Measurements were done by impregnating the brick samples for 10 days with NaCl solutions of known concentrations (0–5 M). Then, the moist–salt crystallized samples were lyophilized at − 50 °C for 6 h to grow NaCl crystals. The pore structure, chemical composition and mineral content of the brick samples were determined using SEM–EDS and X-ray diffraction techniques. Physical properties of the brick samples were studied using the standards of the American Society of Testing and Materials. The response of the sample mass, moisture content/%, thermal conductivity, thermal diffusivity and specific heat capacity of moist and NaCl saturated brick samples to NaCl saturation period were also investigated. After freeze-drying of samples, the results confirmed that NaCl crystallization increases with an increase in molarity of NaCl solution in bricks. NaCl crystallization brought a sharp increase in the thermal response and a decrease in the thermal insulation of the brick samples. These trends were described using suitable linear fit equations to assess the thermal performance of the impregnated fired clay bricks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

Al the data related to the reported work have been included in this paper. Corresponding author can provide the raw data on request.

Code availability

No specific codes or software is used in the reported work.

Abbreviations

ASTM:

American Society of Testing and Materials

\(C_{{\text{v}}}\) :

Specific heat capacity per unit volume/MJ m3 K1

\(C_{{\text{p}}}\) :

Specific heat capacity at constant pressure/J kg−1 K−1

D:

Effective diffusion constant

TPS:

Transient plane source

M:

Molarity

SEM–EDS:

Scanning electron microscopy equipped with energy dispersive spectroscopy

m:

Mass/g

WA/%:

Water absorption/%

XRD:

X-ray diffraction

\(\alpha\) :

Thermal diffusivity/mm2 s1

\(\lambda\) :

Thermal conductivity/Wm1 K1

\(\rho\) :

Density/g cm3

References

  1. Aydin T. Development of porous lightweight clay bricks using a replication method. J Aust Ceram Soc. 2018;54:169–75. https://doi.org/10.1007/s41779-017-0138-3.

    Article  CAS  Google Scholar 

  2. Aydin T. The development of porcelain foams lighter than water for heat isolation application. J Therm Anal Calorim. 2019;136:535–9. https://doi.org/10.1007/s10973018-7691-z.

    Article  CAS  Google Scholar 

  3. Paz-García JM, Johannesson BJ, Ottosen LM, Alshawabkeh AN, Ribeiro AB, Rodríguez-Maroto JM. Modeling of electrokinetic desalination of bricks. Electrochim Acta. 2012;86:213–22. https://doi.org/10.1016/j.electacta.2012.05.132.

    Article  CAS  Google Scholar 

  4. Delgado JMPQ, Guimarães AS, De Freitas VP, Antepara I, Kočí V, Černý R. Salt damage and rising damp treatment in building structures. Adv Mater Sci Eng. 2016;216:1–13.

    Google Scholar 

  5. Kamran K, van Soestbergen M, Pel L. Electrokinetic salt removal from porous building materials using ion exchange membranes. Transp Porous Media. 2012;96:221–35.

    Article  Google Scholar 

  6. Abid M, Hammerschmidt U, Köhler J. Thermophysical properties of a fluid-saturated sandstone. Int J Therm Sci. 2014;76:43–50. https://doi.org/10.1016/j.ijthermalsci.2013.08.017.

    Article  Google Scholar 

  7. Koniorczyk M, Konca P. Experimental and numerical investigation of sodium sulphate crystallization in porous materials. Heat Mass Transf. 2013;49:437–49.

    Article  CAS  Google Scholar 

  8. Román J, Vera R, Bagnara M, Carvajal AM, Aperador W. Effect of chloride ions on the corrosion of galvanized steel embedded in concrete prepared with cements of different composition. Int J Electrochem Sci. 2014;9:580–92.

    Google Scholar 

  9. Demirboǧa R. Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build. 2003;35:189–92.

    Article  Google Scholar 

  10. Larsen ES, Nielsen CB. Decay of bricks due to salt. Mater Struct. 1990;23:16–25.

    Article  CAS  Google Scholar 

  11. Benavente D, Linares-Fernández L, Cultrone G, Sebastián E. Influence of microstructure on the resistance to salt crystallisation damage in brick. Mater Struct. 2006;39:105–13.

    Article  CAS  Google Scholar 

  12. Todorović J, Janssen H. The impact of salt pore clogging on the hygric properties of bricks. Constr Build Mater. 2018;164:850–63.

    Article  Google Scholar 

  13. Hendrickx R, De Clercq H, Roels S, Vanhellemont Y, Herinckx S. Experimental investigation of the influence of precipitated salts on the liquid transport properties of brick using an organic liquid. In: Proceedings conference salt weather build stone sculpt. 2011;55–62.

  14. Ahl J, Lu X. Studying of salt diffusion behaviour in brick. J Mater Sci. 2007;42:2512–20.

    Article  CAS  Google Scholar 

  15. Stryszewska T. The change in selected properties of ceramic materials obtained from ceramic brick treated by the sulphate and chloride ions. Constr Build Mater. 2014;66:268–74. https://doi.org/10.1016/j.conbuildmat.2014.05.066.

    Article  Google Scholar 

  16. Stryszewska T, Kańka S. The Effects of salt crystallization in ceramic bricks in terms of line deformations. Procedia Eng. 2017;193:120–7.

    Article  CAS  Google Scholar 

  17. Koniorczyk M, Gawin D. Heat and moisture transport in porous building materials containing salt. J Build Phys. 2008;31:279–300.

    Article  CAS  Google Scholar 

  18. Balaji NC, Mani M, Reddy BVV. Discerning heat transfer in building materials. Energy Procedia. 2014;54:654–68. https://doi.org/10.1016/j.egypro.2014.07.307.

    Article  Google Scholar 

  19. Kosior-Kazberuk M, Ezerskiy V. Mathematical modelling of thermal conductivity process in salt-contaminated wall materials. Int J Heat Mass Transf. 2011;54:86–91. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.004.

    Article  CAS  Google Scholar 

  20. Kosior-Kazberuk M, Ezerskiy V. Method of prediction of thermal conductivity coefficient of wall materials containing Salts. J Civ Eng Manag. 2011;17:108–14.

    Article  Google Scholar 

  21. Pavlík Z, Fiala L, Vejmelková E. Application of effective media theory for determination of thermal properties of hollow bricks as a function of moisture content. Int J Thermophys. 2013;34:894–908.

    Article  Google Scholar 

  22. Pavlík Z, Jerman M, Trník A, Kočí V, Černý R. Effective thermal conductivity of hollow bricks with cavities filled by air and expanded polystyrene. J Build Phys. 2014;37:436–48. https://doi.org/10.1177/1744259113499214.

    Article  Google Scholar 

  23. Bednarska D, Koniorczyk M. The influence of water and salt content on the thermal conductivity coefficient of red clay brick. In: AIP conference proceedings 2017. p. 040005–1.

  24. Anjum F, Ghaffar A, Jamil Y, Majeed MI. Effect of sintering temperature on mechanical and thermophysical properties of biowaste-added fired clay bricks. J Mater Cycles Waste Manag. 2019;21:503–24. https://doi.org/10.1007/s10163-018-0810-x.

    Article  Google Scholar 

  25. Bouguerra A, Ait-Mokhtar A, Amiri O, Diop MB. Measurement of thermal conductivity, thermal diffusivity and heat capacity of highly porous building material using transient plane source technique. Int Commun Heat Mass Transf. 2001;28:1065–78.

    Article  Google Scholar 

  26. Suleiman MB. Thermal conductivity of saturated samples using the hot-disk technique. In: Proceedings of 4th WSEAS international conference heat transfer thermal engineering envirnoment. 2006;140–5. http://www.wseas.us/e-library/conferences/2006elounda2/papers/538-180.pdf

  27. Abid M, Hammerschmidt U, Kohler J. Temperature and moisture dependent thermophysical properties of Sander sandstone. Int J Therm Sci. 2014;86:88–94.

    Article  Google Scholar 

  28. Anjum F, Naz MY, Ghaffar A, Shukrullah S, AbdEl-Salam NM, Ibrahim KA. Moisture and temperature response of structural and lithology based thermophysical and energy Saving traits of limestone using experimental and least-square fitting methods. J Therm Sci. 2021;30:551–61.

    Article  Google Scholar 

  29. COD Database 2017 [Internet]. Available from: http://wiki.crystallography.net/citingcod/

  30. ASTM C373-88. Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products. Am Soc Test Mater. 1999;88:1–2.

    Google Scholar 

  31. Maage M. Frost resistance and pore size distribution in bricks. Matériaux Constr. 1984;17:345–50.

    Article  Google Scholar 

  32. Lu G, Lu GQ, Xiao ZM. Mechanical properties of porous materials. J Porous Mater. 1999;6:359–68.

    Article  CAS  Google Scholar 

  33. Charola AE, Lazzarini L. Deterioration of brick masonry caused by acid rain. In: ACS symposium series. 1986;250–8.

  34. Mallidi SR. Application of mercury intrusion porosimetry on clay bricks to assess freeze-thaw durability—a bibliography with abstracts. Constr Build Mater. 1996;10:461–5.

    Article  Google Scholar 

  35. Cultrone G, Sebastián E, De La Torre MJ. Mineralogical and physical behaviour of solid bricks with additives. Constr Build Mater. 2005;19:39–48.

    Article  Google Scholar 

  36. ASTM C62. Standard specification for building brick. Am Soc Test Mater. 2017;i:2–7.

    Google Scholar 

  37. Abu-Hamdeh NH, Reeder RC. Soil thermal conductivity:effects of density, moisture, salt concentration, and organic Matter. Soil Sci Soc Am J. 2000;64:1285–90.

    Article  CAS  Google Scholar 

  38. Gualtieri ML, Gualtieri AF, Gagliardi S, Ruffini P, Ferrari R, Hanuskova M. Thermal conductivity of fired clays: effects of mineralogical and physical properties of the raw materials. Appl Clay Sci. 2010;49:269–75.

    Article  CAS  Google Scholar 

  39. Šveda M, Janík B, Pavlík V, Štefunková Z, Pavlendová G, Šín P, et al. Pore-size distribution effects on the thermal conductivity of the fired clay body from lightweight bricks. J Build Phys. 2017;41:78–94. https://doi.org/10.1177/1744259116672437.

    Article  Google Scholar 

  40. Mensinga P. Determining the critical degree of saturation of brick using frost dilatometry. MS Thesis, University of Waterloo, Canada.; 2009. http://www.uwspace.uwaterloo.ca/handle/10012/4638

  41. Baer N, Livingstone F, editors. Conservation of historic brick structures. New York: Routledge; 2015.

    Google Scholar 

  42. Cultrone G, Sebastian E, Elert K, de la Torre MJ, Cazalla O, Rodriguez-Navarro C. Influence of mineralogy and firing temperature on the porosity of bricks. J Eur Ceram Soc. 2004;24:547–64.

    Article  CAS  Google Scholar 

  43. Somsim S, Zsembery S, Ferguson JA. A study of pore size distributions in fired clay bricks in relation to salt attack resistance. In: McNeilly T. SJ, editor. Proceedings seventh international brick mason conference University of Melbourne, Melbourne; 1985. p. 253–60. http://www.thinkbrick.com.au/shadomx/apps/fms/fmsdownload.cfm?file_uuid=DFCE574D-936E-B09F-8517-C11C074D8757

  44. Clauser C, Huenges E. Thermal conductivity of rocks and minerals. Rock Phys Phase Relat Handb Phys Constants. 1995;3:105–26.

    Google Scholar 

  45. Hendrickx R, Roels S, De Clercq H, Vanhellemont Y. Experimental determination of liquid transport properties on salt-contaminated porous stone. In: 12th international conference on durability of building materials components, Porto, 12–15 April 2011. 2011;125–32.

  46. Oke TR. Boundary layer climates. 2nd ed. London: Routledge; 1987.

    Google Scholar 

  47. Roxy MS, Sumithranand VB, Renuka G. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, South Kerala. J Earth Syst Sci. 2010;119:507–17.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia for supporting this work under the Research Group Project No. RG-1440-095.

Funding

This work is sponsored by the King Saud University, Riyadh, Saudi Arabia under the research Group project No. RG-1440-095.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Y. Naz or N. M. AbdEl-Salam.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest or competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, F., Naz, M.Y., Ghaffar, A. et al. Study of thermophysical properties of moist and salt crystallized fired clay bricks for energy saving perspective. J Therm Anal Calorim 147, 4541–4552 (2022). https://doi.org/10.1007/s10973-021-10827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10827-x

Keywords

Navigation