Skip to main content
Log in

Unsteady pulsatile fractional Maxwell viscoelastic blood flow with Cattaneo heat flux through a vertical stenosed artery with body acceleration

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current problem, we aim to discuss the heat transfer of pulsatile unsteady fractional Maxwell fluid (blood) flow through a vertical stenosed artery with body acceleration. The concept of fractional Cattaneo model will modify the energy equation. We will get the solutions using Laplace and finite Hankel transformations. The inverse of the transformed functions will be calculated numerically. It is observed that, the heat relaxation time causes a delay in the heat transfer until a critical time. In addition, the heat transfer increases sharply to take its maximum value at a critical value of time then it decreases to reach the steady state. Moreover, the blood velocity, the flow rate, and the shear stress continue to fluctuate during the time period due to the pulsatile phenomenon and body acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\((A_{0}\) and \(A_{1})\) :

Steady and fluctuating components of the pressure gradient

a :

The radius of the catheter tube (m)

\(a_{0}\) :

The amplitude (m)

B :

The body acceleration parameter

\(c_{\mathrm{p}}\) :

Specific heat \(({\hbox{J kg}}^{-1}\,\hbox{K}^{-1})\)

d :

The length of non-stenotic region (m)

e :

The amplitude fluctuation parameter

\(F'(t')\) :

The periodic body acceleration

\(f_{\mathrm{b}}\) :

The frequency of body acceleration (Hz)

\(f_{\mathrm{p}}\) :

The pulse frequency (Hz)

g :

The acceleration of gravity \((\hbox{m s}^{-2})\)

Gr:

Grashof number

K :

Thermal conductivity of the fluid \(({\hbox{W m}}^{-1}\,\hbox{K}^{-1})\)

\(p'\) :

Pressure \(({\hbox{N m}}^{-2})\)

Pr:

Prandtl number

\(Q_{0}\) :

Heat source

\(r'\) :

Radial direction (m)

\(R_{\mathrm{o}}\) :

The radius of normal artery (m)

\(R'_{2}\) :

Radius of the outer tube (m)

Re:

Reynolds number

\(T'\) :

Fluid temperature (K)

\(T_{0}\) and \(T_{1}\) :

Walls temperature

\(U'\) :

The velocity vector

\(u'\) and \(w'\) :

Velocity components in radial and axial directions respectively \(({\hbox{m s}}^{-1})\)

\(z'\) :

Axial direction (m)

\(\alpha ,\;\beta\) and \(\nu\) :

The fractional-orders

\(\gamma ^{2}\) :

Womersley frequency parameter

\(\delta\) :

The critical height of the stenosis (m)

\(\epsilon\) :

The radius ratio

\(\zeta\) :

The non-dimensional heat

\(\theta\) :

Dimensionless temperature

\((\lambda '\) and \(\lambda '_{1})\) :

The relaxation times of fluid and heat respectively

\(\mu\) :

Viscosity \(({\hbox{N s m}}^{-2})\)

\(\phi\) :

The lead angle

\(\rho\) :

Density \((\hbox{kg m}^{-3})\)

\(\varrho\) :

The thermal expansion coefficient \((\hbox{K}^{-1})\)

References

  1. Verma NK, Siddiqui SU, Gupta RS. Pulsatile flow of blood in mild stenosis: effects of body acceleration. e-J Sci Technol (e-JST). 2011;5(6):61–76.

    Google Scholar 

  2. Biswas D, Chakraborty US. Two-layered pulsatile blood flow in a stenosed artery with body acceleration and slip at wall. AAM: Int J. 2010;5(10):1400–17.

    Google Scholar 

  3. Nagarani P, Sarojamma G. Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery. Korea–Australia Rheol J. 2008;20(4):189–96.

    Google Scholar 

  4. Nagarani P, Sarojamma G. Flow of a Casson fluid through a stenosed artery subject to periodic body acceleration. In: Proceedings of the 9th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5–7, 2007. pp. 237–244

  5. Siddiqui SU, Geeta Sapna. Mathematical modelling of blood flow through catheterized artery under the influence of body acceleration with slip velocity. AAM: Int J. 2013;8(2):481–94.

    Google Scholar 

  6. Das K, Saha GC. Arterial MHD pulsatile flow of blood under periodic body acceleration. Bull Soc Math Banja Luka. 2009;16:21–42.

    Google Scholar 

  7. Bakhti H, Azrar L, Baleaun D. Pulsatile blood flow in constricted tapered artery using a variable-order fractional Oldroyd-B model. Therm Sci. 2017;21(1A):29–40. https://doi.org/10.2298/TSCI160421237B.

    Article  Google Scholar 

  8. Hamza SEE. MHD flow of an Oldroyd-B Fluid through porous medium in a circular channel under the effect of time dependent pressure gradient. Am J Fluid Dyn. 2017;7(1):1–11. https://doi.org/10.5923/j.ajfd.20170701.01.

    Article  Google Scholar 

  9. Tripathi D. Peristaltic transport of fractional Maxwell fluids in uniform tubes: applications in endoscopy. Comput Math Appl. 2011;62:1116–26. https://doi.org/10.1016/j.camwa.2011.03.038.

    Article  Google Scholar 

  10. Friedrich C. Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheola Acta. 1991;30:151–8. https://doi.org/10.1007/BF01134604.

    Article  CAS  Google Scholar 

  11. Fetecau C, Ellahi R, Sait SM. Mathematical analysis of Maxwell fluid flow through a porous plate channel induced by a constantly accelerating or oscillating wall. Mathematics. 2021;9(1):90. https://doi.org/10.3390/math9010090.

    Article  Google Scholar 

  12. Nadeem S, Akram S. Peristaltic flow of a Maxwell model through porous boundaries in a porous medium. Transp Porous Med. 2011;86:895–909. https://doi.org/10.1007/s11242-010-9663-z.

    Article  Google Scholar 

  13. Bazhlekova E, Bazhlekov I. Stokes’ first problem for viscoelastic fluids with a fractional Maxwell model. Fractal Fract. 2017;1(7):1–12. https://doi.org/10.3390/fractalfract1010007.

    Article  Google Scholar 

  14. Zafar A A, Riaz M B, Asjad M I. Unsteady rotational flow of fractional Maxwell fluid in a cylinder subject to shear stress on the boundary. Punjab Univ J Math. 2018;50(2):21–32.

    Google Scholar 

  15. Ansari MN. Exact solution of fractionalized MHD viscoelastic fluid. Int J Adv Appl Math Mech. 2018;6(2):20–9.

    Google Scholar 

  16. Shen M, Chen S, Liu F. Unsteady MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid with Cattaneo heat flux and different particle shapes. Chin J Phys. 2018;56(3):1199–211. https://doi.org/10.1016/j.cjph.2018.04.024.

    Article  CAS  Google Scholar 

  17. Ezzat MA. Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B. 2010;405:4188–94. https://doi.org/10.1016/j.physb.2010.07.009.

    Article  CAS  Google Scholar 

  18. Elelamy AF, Elgazery NS, Ellahi R. Blood flow of MHD non-Newtonian nanofluid with heat transfer and slip effects: application of bacterial growth in heart valve. Int J Numer Methods Heat Fluid Flow. 2020;30(11):4883–908. https://doi.org/10.1108/HFF-12-2019-0910.

    Article  Google Scholar 

  19. Alamri SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A. 2019;383(2–3):276–81. https://doi.org/10.1016/j.physleta.2018.10.035.

    Article  CAS  Google Scholar 

  20. Tripathi D, Prakash J, Tiwari AK, Ellahi R. Thermal, microrotation, electromagnetic field and nanoparticle shape effects on Cu–CuO/blood flow in microvascular vessels. Microvasc Res. 2020;132:104065. https://doi.org/10.1016/j.mvr.2020.104065.

    Article  CAS  PubMed  Google Scholar 

  21. Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Akbari OA. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2020;140:1121–45. https://doi.org/10.1007/s10973-019-08841-1.

    Article  CAS  Google Scholar 

  22. Povstenko YZ. Theory of thermoelasticity based on the space-time fractional heat conduction equation. Phys Scr. 2009;2009(T136):014017. https://doi.org/10.1088/0031-8949/2009/T136/014017.

    Article  CAS  Google Scholar 

  23. Ezzat MA. Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B. 2010;405(19):4188–94. https://doi.org/10.1016/j.physb.2010.07.009.

    Article  CAS  Google Scholar 

  24. Ramana KV, Gangadhar K, Kannan T, Chamkha AJ. Cattaneo–Christov heat flux theory on transverse MHD Oldroyd-B liquid over nonlinear stretched flow. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10568-x.

    Article  Google Scholar 

  25. Li C, Zheng L, Zhang X, Chen G. Flow and heat transfer of a generalized Maxwell fluid with modified fractional Fourier’s law and Darcy’s law. Comput Fluids. 2016;125:25–38. https://doi.org/10.1016/j.compfluid.2015.10.021.

    Article  Google Scholar 

  26. Bai Y, Huo L, Zhang Y, Jiang Y. Flow, heat and mass transfer of three-dimensional fractional Maxwell fluid over a bidirectional stretching plate with fractional Fourier’s law and fractional Fick’s law. Comput Math Appl. 2019;78(8):2831–46. https://doi.org/10.1016/j.camwa.2019.04.027.

    Article  Google Scholar 

  27. Zhang M, Shen M, Liu F, Zhang H. A new time and spatial fractional heat conduction model for Maxwell nanofluid in porous medium. Comput Math Appl. 2019;78(5):1621–36. https://doi.org/10.1016/j.camwa.2019.01.006.

    Article  Google Scholar 

  28. Chakravarty S, Mandal PK. A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosis subjected to body acceleration. Math Comput Model. 1996;24(1):43–58. https://doi.org/10.1016/0895-7177(96)00079-9.

    Article  Google Scholar 

  29. Young DF. Effect of a time dependent stenosis of flow through a tube. J Eng Ind. 1968;90(2):248–54. https://doi.org/10.1115/1.3604621.

    Article  Google Scholar 

  30. Podlubny I. Fractional Differential Equations. San Diego: Academic Press; 1999.

    Google Scholar 

  31. El-Masry Y, Abd Elmaboud Y, Abdel-Sattar MA. Direct current/ alternating current magnetohydrodynamic micropump of a hybrid nanofluid through a vertical annulus with heat transfer. J Therm Sci Eng Appl. 2020;12:044501–1. https://doi.org/10.1115/1.4046058.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant No. (G.R.P-213-41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Abd Elmaboud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The constitutive relation of fractional Maxwell fluid is [9, 10]

$$\begin{aligned}&\left( 1+\lambda '^{\alpha }\frac{\partial ^{\alpha }}{\partial t'^{\alpha }}\right) \sigma '=\mu \lambda '^{\beta -1}\frac{\partial ^{\beta -1}{\dot{\Upsilon }}'}{\partial t'^{\beta -1}}, \end{aligned}$$
(A.1)
$$\begin{aligned}&{\tau }'= -p'\mathbf{I }+\sigma ', \end{aligned}$$
(A.2)

where \({\dot{\Upsilon }}'\) is the shear rate, \(\sigma '\) is the shear stress and \({\tau }'\) denotes the stress tensor.

The momentum equation is

$$\begin{aligned} \rho \frac{D \mathbf{U }'}{D t'}=\nabla \cdot {\tau }'+\rho \mathbf{g }\varrho (T'-T_{0})+F'(t')\mathbf{e}_{\mathrm{z}}, \end{aligned}$$
(A.3)

where \(\mathbf{e}_{\mathrm{z}}\) is the unit vector in z-direction. The combination between Eqs. (A.1), (A.2) and (A.3) when \(\mathbf{U }'=(u',0,w')\) gives Eqs. (6) and (7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Kot, M.A., Abd Elmaboud, Y. Unsteady pulsatile fractional Maxwell viscoelastic blood flow with Cattaneo heat flux through a vertical stenosed artery with body acceleration. J Therm Anal Calorim 147, 4355–4368 (2022). https://doi.org/10.1007/s10973-021-10822-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10822-2

Keywords

Navigation