Skip to main content
Log in

Preliminary study on fire risk of redox flow battery components

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The redox flow battery (RFB) is one new kind of energy storage unit, which is used in electrochemical energy storage. However, the knowledge on its fire risk is very limited. Thus the fire risk of redox flow batteries was investigated using cone calorimeter and C80 calorimeter in this work. The combustion behaviors of RFB components are tested using cone calorimeter, whereas the thermal behaviors of the component materials, including bipolar plate, electrode frame, electrode and membrane, inside the RFBs are measured using C80 calorimeter. By comparing the results in two experiments, it is indicated that the main hazardous source of the fire is the electrode frame, followed by the bipolar plate. The thermal stability of membranes is the worst. The electrode is a non-flammable component with little fire risk. This analytical results can provide safety guide for both improvements of RFBs and large scale usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Masmoudiy A, Abdelkafi A, Krichen L. Electric power generation based on variable speed wind turbine under load disturbance. Energy. 2011;36(8):5016–26. https://doi.org/10.1016/j.energy.2011.05.047.

    Article  Google Scholar 

  2. Xiao L, Lin L. Investigations on architecture and operation pattern of future power grid. Adv Technol Electr Eng Energy. 2011;30(1):56–63.

    Google Scholar 

  3. Pourbehzadi M, Niknam T, Aghaei J, Mokryani G, Shafie-khah M, Catalao JPS. Optimal operation of hybrid AC/DC microgrids under uncertainty of renewable energy resources: a comprehensive review. Int J Electr Power Energy Syst. 2019;109:139–59. https://doi.org/10.1016/j.ijepes.2019.01.025.

    Article  Google Scholar 

  4. Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928–35. https://doi.org/10.1126/science.1212741.

    Article  CAS  PubMed  Google Scholar 

  5. Leung P, Li XH, de Leon CP, Berlouis L, Low CTJ, Walsh FC. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012;2(27):10125–56. https://doi.org/10.1039/c2ra21342g.

    Article  CAS  Google Scholar 

  6. Alotto P, Guarnieri M, Moro F. Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev. 2014;29:325–35. https://doi.org/10.1016/j.rser.2013.08.001.

    Article  CAS  Google Scholar 

  7. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q. Redox flow batteries: a review. J Appl Electrochem. 2011;41(10):1137–64. https://doi.org/10.1007/s10800-011-0348-2.

    Article  CAS  Google Scholar 

  8. Wittman RM, Perry ML, Lambert TN, Chalamala BR, Preger Y. Perspective—on the need for reliability and safety studies of grid-scale aqueous batteries. J Electrochem Soc. 2020;167(9):090545. https://doi.org/10.1149/1945-7111/ab9406.

    Article  CAS  Google Scholar 

  9. Chen F, Gu S, Ma Q, Liu Q, Zhang M. Vanadium(III)/Vanadium(II) and hydrogen evolution thermodynamic behavior at the negative of the all-vanadium redox flow batteries. J Electrochem Soc. 2017;164(12):A2403–6. https://doi.org/10.1149/2.0751712jes.

    Article  CAS  Google Scholar 

  10. Fetyan A, El-Nagar GA, Lauermann I, Schnucklake M, Schneider J, Roth C. Detrimental role of hydrogen evolution and its temperature-dependent impact on the performance of vanadium redox flow batteries. J Energy Chem. 2019;32:57–62. https://doi.org/10.1016/j.jechem.2018.06.010.

    Article  Google Scholar 

  11. Reynard D, Vrubel H, Dennison CR, Battistel A, Girault H. On-site purification of copper-contaminated vanadium electrolytes by using a vanadium redox flow battery. Chemsuschem. 2019;12(6):1222–8. https://doi.org/10.1002/cssc.201802895.

    Article  CAS  PubMed  Google Scholar 

  12. Wei L, Zhao TS, Xu Q, Zhou XL, Zhang ZH. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries. Appl Energy. 2017;190:1112–8. https://doi.org/10.1016/j.apenergy.2017.01.039.

    Article  CAS  Google Scholar 

  13. Cao L, Skyllas-Kazacos M, Menictas C, Noack J. A review of electrolyte additives and impurities in vanadium redox flow batteries. J Energy Chem. 2018;27(5):1269–91. https://doi.org/10.1016/j.jechem.2018.04.007.

    Article  Google Scholar 

  14. CAMEO Chemicals, CAMEO chemicals. Chemical datasheet-hydrogen. Retrieved from https://cameochemicals.noaa.gov/chemical/8729.

  15. Chalamala BR, Soundappan T, Fisher GR, Anstey MR, Viswanathan VV, Perry ML. Redox flow batteries: an engineering perspective. Proc IEEE. 2014;102(6):976–99. https://doi.org/10.1109/jproc.2014.2320317.

    Article  CAS  Google Scholar 

  16. Alagia M, Balucani N, Cartechini L, Casavecchia P, van Kleef EH, Volpi GG, et al. Dynamics of the simplest chlorine atom reaction: an experimental and theoretical study. Science. 1996;273(5281):1519. https://doi.org/10.1126/science.273.5281.1519.

    Article  CAS  Google Scholar 

  17. Pavlov D, Monahov B, Kirchev A, Valkovska D. Thermal runaway in VRLAB—phenomena, reaction mechanisms and monitoring. J Power Sources. 2006;158(1):689–704. https://doi.org/10.1016/j.jpowsour.2005.09.022.

    Article  CAS  Google Scholar 

  18. Shi Y, Eze C, Xiong B, He W, Zhang H, Lim TM, et al. Recent development of membrane for vanadium redox flow battery applications: a review. Appl Energy. 2019;238:202–24. https://doi.org/10.1016/j.apenergy.2018.12.087.

    Article  CAS  Google Scholar 

  19. Su X, Yang L, Zhou Y, Lin Y, Yu S. Developments of electrodes for vanadium redox flow battery. Energy Storage Sci Technol. 2019;8(1):65–74.

    Google Scholar 

  20. Whitehead AH, Rabbow TJ, Trampert M, Pokorny P. Critical safety features of the vanadium redox flow battery. J Power Sources. 2017;351:1–7. https://doi.org/10.1016/j.jpowsour.2017.03.075.

    Article  CAS  Google Scholar 

  21. Zhang Y, Xi J, Liu L, Wu Z. Boosting the thermal stability of electrolytes in vanadium redox flow batteries via 1-hydroxyethane-1,1-diphosphonic acid. J Appl Electrochem. 2020;50(2):255–64. https://doi.org/10.1007/s10800-019-01384-1.

    Article  CAS  Google Scholar 

  22. Yang Y, Zhang Y, Liu T, Huang J. Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte. J Power Sources. 2019;415:62–8. https://doi.org/10.1016/j.jpowsour.2019.01.049.

    Article  CAS  Google Scholar 

  23. Kim KJ, Park M-S, Kim Y-J, Kim JH, Dou SX, Skyllas-Kazacos M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J Mater Chem A. 2015;3(33):16913–33. https://doi.org/10.1039/c5ta02613j.

    Article  CAS  Google Scholar 

  24. Ye RJ, Henkensmeier D, Yoon SJ, Huang ZF, Kim DK, Chang ZJ, et al. Redox flow batteries for energy storage: a technology review. J Electrochem Energy Convers Storage. 2018. https://doi.org/10.1115/1.4037248.

    Article  Google Scholar 

  25. Liu P, Liu C, Yang K, Zhang M, Gao F, Mao B, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating. J Energy Storage. 2020;31:101714. https://doi.org/10.1016/j.est.2020.101714.

    Article  Google Scholar 

  26. Parker T, Obeng L, Wang Q. Fire hazard assessment of lead-acid batteries. The National Fire Protection Association Report, No. FPRF-2020-08-REV, US. Department of Chemical EngineeringTexas A&M University, College Station, Texas, 2020.

  27. Cunha A, Martins J, Rodrigues N, Brito FP. Vanadium redox flow batteries: a technology review. Int J Energy Res. 2015;39(7):889–918. https://doi.org/10.1002/er.3260.

    Article  CAS  Google Scholar 

  28. Thornton WM. The relation of oxygen to the heat of combustion of organic compounds. Philos Mag. 1917;33(193–98):196–203.

    Article  CAS  Google Scholar 

  29. ISO 5660-1,Reaction to fire tests-heat release ,smoke production and mass loss rate—part 1: heat release rate (cone calorimeter method) [S].

  30. Leung P, Shah AA, Sanz L, Flox C, Morante JR, Xu Q, et al. Recent developments in organic redox flow batteries: a critical review. J Power Sources. 2017;360:243–83. https://doi.org/10.1016/j.jpowsour.2017.05.057.

    Article  CAS  Google Scholar 

  31. Wang Q, Jiang G, Liu H, Li A. Research progress of composite bipolar plate for vanadium redox flow battery. Chin J Power Sources. 2017;41(4):658–60.

    Google Scholar 

  32. Park M, Jung Y-J, Ryu J, Cho J. Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries. J Mater Chem A. 2014;2(38):15808–15. https://doi.org/10.1039/c4ta03542a.

    Article  CAS  Google Scholar 

  33. Zhong S. Integrated assessing fire hazard of polymer based on data of cone calorimeter. Chin Polym Bull. 2006;5:37–44.

    Google Scholar 

  34. Wong ACY, Lam F. Study of selected thermal characteristics of polypropylene/polyethylene binary blends using DSC and TGA. Polym Test. 2002;21(6):691–6. https://doi.org/10.1016/S0142-9418(01)00144-1.

    Article  CAS  Google Scholar 

  35. Kear G, Shah AA, Walsh FC. Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. Int J Energy Res. 2012;36(11):1105–20. https://doi.org/10.1002/er.1863.

    Article  CAS  Google Scholar 

  36. Lindholm J, Brink A, Hupa M. Influence of decreased sample size on cone calorimeter results. Fire Mater. 2012;36(1):63–73. https://doi.org/10.1002/fam.1087.

    Article  CAS  Google Scholar 

  37. Lourenssen K, Williams J, Ahmadpour F, Clemmer R, Tasnim S. Vanadium redox flow batteries: a comprehensive review. J Energy Storage. 2019;25:100844. https://doi.org/10.1016/j.est.2019.100844.

    Article  Google Scholar 

  38. Liu T, Li X, Zhang H, Chen J. Progress on the electrode materials towards vanadium flow batteries (VFBs) with improved power density. J Energy Chem. 2018;27(5):1292–303. https://doi.org/10.1016/j.jechem.2018.07.003.

    Article  Google Scholar 

  39. Schweiss R. Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries. J Power Sources. 2015;278:308–13. https://doi.org/10.1016/j.jpowsour.2014.12.081.

    Article  CAS  Google Scholar 

  40. Jie Z. Experimental study of flame temperature measurement based on combustion flame radiation multi-wavelength analysis. Power Eng. 1999;19(6):460–5.

    Google Scholar 

  41. Pamula E, Rouxhet PG. Bulk and surface chemical functionalities of type III PAN-based carbon fibres. Carbon. 2003;41(10):1905–15. https://doi.org/10.1016/s0008-6223(03)00177-5.

    Article  CAS  Google Scholar 

  42. Shigematsu T. Redox flow battery for energy storage. SEI Tech Rev. 2011;73:4–13.

    Google Scholar 

  43. Maurya S, Shin S-H, Kim Y, Moon S-H. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Adv. 2015;5(47):37206–30. https://doi.org/10.1039/c5ra04741b.

    Article  CAS  Google Scholar 

  44. Prifti H, Parasuraman A, Winardi S, Lim TM, Skyllas-Kazacos M. Membranes for redox flow battery applications. Membranes. 2012;2(2):275–306. https://doi.org/10.3390/membranes2020275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mauritz KA, Moore RB. State of Understanding of Nafion. Chem Rev. 2004;104(10):4535–86. https://doi.org/10.1021/cr0207123.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang H, Wang X. Recent progress on vanadium flow battery technologies. Energy Storage Sci Technol. 2013;2(3):281–8. https://doi.org/10.3969/j.issn.2095-4239.2013.03.014.

    Article  Google Scholar 

  47. Shunquan ZHU, Weirong SUN, Qian W, Haitao YIN, Baoguo W. Review of R&D status of vanadium redox battery. Chem Ind Eng Prog. 2007;26(2):207–11.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Project from China Southern Power Grid (No. 020000KK52180010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Liu, P., Li, Y. et al. Preliminary study on fire risk of redox flow battery components. J Therm Anal Calorim 147, 4131–4140 (2022). https://doi.org/10.1007/s10973-021-10815-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10815-1

Keywords

Navigation