Skip to main content
Log in

A comprehensive review of micro/nano enhanced phase change materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Enhancement in properties of thermal storage materials improves their performance and contributes to reducing the greenhouse gas emissions. The enhancement can be made in a passive way, which is cost-effective and hardly requires management. For decades, phase change materials (PCMs) have been used in many applications for thermal storage, thermal control and thermal insulation purposes. PCM can store a huge amount of energy with low or no temperature swing. However, the major drawback of PCM is the low thermal conductivity. Techniques of different scales (macroscopic, microscopic and nanoscopic) have been adopted in thermal engineering to enhance the thermal conductivity of PCM. This paper presents a comprehensive review of the literature dealing with micro/nano enhancement techniques of PCMs. Enhancement effects as well as limitations of each technique are discussed in detail. Moreover, direction for future research and possible challenges are pointed out along with conclusions drawn from the studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cho K, Choi SH. Thermal characteristics of paraffin in a spherical capsule during freezing and melting processes. Int J Heat Mass Transf. 2000;43:3183–96. https://doi.org/10.1016/S0017-9310(99)00329-4.

    Article  CAS  Google Scholar 

  2. Kenisarin M, Mahkamov K. Salt hydrates as latent heat storage materials: thermophysical properties and costs. Sol Energy Mater Sola Cells. 2016;145:255–86. https://doi.org/10.1016/j.solmat.2015.10.029.

    Article  CAS  Google Scholar 

  3. Shamberger P, Bruno N. Review of metallic phase change materials for high heat flux transient thermal management applications. Appl Energy. 2020;258:113955. https://doi.org/10.1016/j.apenergy.2019.113955.

    Article  CAS  Google Scholar 

  4. El Karim Y, Grosu Y, Faik A, Lbibb R. Investigation of magnesium-copper eutectic alloys with high thermal conductivity as a new PCM for latent heat thermal energy storage at intermediate-high temperature. J Energy Storage. 2019;26:100974. https://doi.org/10.1016/j.est.2019.100974.

    Article  Google Scholar 

  5. Sarı A. Eutectic mixtures of some fatty acids for low temperature solar heating applications: thermal properties and thermal reliability. Appl Therm Eng. 2005;25:2100–7. https://doi.org/10.1016/j.applthermaleng.2005.01.010.

    Article  CAS  Google Scholar 

  6. Šarler B. Stefan’s work on solid-liquid phase changes. Eng Anal Bound Elem. 1995;16:83–92. https://doi.org/10.1016/0955-7997(95)00047-X.

    Article  Google Scholar 

  7. Ayasoufi A. Numerical simulation of heat conduction with melting and/or freezing by space time conservation element and solution element method. PhD thesis. University of Toledo; 2004

  8. Özişik MN. Heat conduction. 2nd ed. New York: Wiley; 1993. p. 392–435.

    Google Scholar 

  9. Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev. 2010;1:615–28. https://doi.org/10.1016/j.rser.2009.10.015.

    Article  CAS  Google Scholar 

  10. Siegel R. Solidification of low conductivity material containing dispersed high conductivity particles. Int J Heat Mass Transf. 1977;20:1087–9. https://doi.org/10.1016/0017-9310(77)90195-8.

    Article  Google Scholar 

  11. Hoogendoorn CJ, Bart GCJ. Performance and modeling of latent heat stores. Sol Energy. 1992;48:53–8. https://doi.org/10.1016/0038-092X(92)90176-B.

    Article  CAS  Google Scholar 

  12. Charunyakorn P, Sengupta S, Roy SK. Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts. Int J Heat Mass Transf. 1991;34:819–33. https://doi.org/10.1016/0017-9310(91)90128-2.

    Article  CAS  Google Scholar 

  13. Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochim Acta. 2012;540:7–60. https://doi.org/10.1016/j.tca.2012.04.013.

    Article  CAS  Google Scholar 

  14. Nuckols M. Analytical modeling of a diver dry suit enhanced with micro-encapsulated phase change materials. Ocean Eng. 1999;26:547–64. https://doi.org/10.1016/S0029-8018(98)00001-8.

    Article  Google Scholar 

  15. Sparrow EM, Larsen ED, Ramsey JW. Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer. Int J Heat Mass Transf. 1981;24:273–84. https://doi.org/10.1016/0017-9310(81)90035-1.

    Article  Google Scholar 

  16. Magendran SS, Ahmed Khan FS, Mubarak NM, Vaka M, Walvekar R, Khalid M, Abdullahd EC, Nizamuddin S, Karri RR. Synthesis of organic phase change materials (PCM) for energy storage applications: a review. Nano Struct Nano Obj. 2019;20:100399. https://doi.org/10.1016/j.nanoso.2019.100399.

    Article  Google Scholar 

  17. Lin Y, Alva G, Fang G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy. 2018;165:685–708. https://doi.org/10.1016/j.energy.2018.09.128.

    Article  CAS  Google Scholar 

  18. Raud R, Jacob R, Bruno F, Will G, Steinberg TA. A critical review of eutectic salt property prediction for latent heat energy storage systems. Renew Sustain Energy Rev. 2017;70:936–44. https://doi.org/10.1016/j.rser.2016.11.274.

    Article  Google Scholar 

  19. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13:318–45. https://doi.org/10.1016/j.rser.2007.10.005.

    Article  CAS  Google Scholar 

  20. Alexiades V, Solomon AD. Mathematical modeling of melting and freezing processes. Washington: Hemisphere; 1993.

    Google Scholar 

  21. Eames IW, Adref KT. Freezing and melting of water in spherical enclosures of the type used in thermal (ice) storage systems. Appl Therm Eng. 2002;22:733–45. https://doi.org/10.1016/S1359-4311(02)00026-1.

    Article  CAS  Google Scholar 

  22. Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007;50:1790–804. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007.

    Article  Google Scholar 

  23. Ho CJ, Wang WJ, Lai CM. Dynamic response of a thermally activated paraffin actuator. Int J Heat Mass Transf. 2016;103:894–9. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.104.

    Article  CAS  Google Scholar 

  24. Kowalczyk W, Hartmann C, Delgado A. Modelling and numerical simulation of convection driven high pressure induced phase changes. Int J Heat Mass Transf. 2004;47:1079–89. https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.030.

    Article  CAS  Google Scholar 

  25. Pham QT. Modelling heat and mass transfer in frozen foods: a review. Int J Refrig. 2006;29:876–88. https://doi.org/10.1016/j.ijrefrig.2006.01.013.

    Article  CAS  Google Scholar 

  26. Conti M. Planar solidification of a finite slab: effects of the pressure dependence of the freezing point. Int J Heat Mass Transf. 1995;38:65–70. https://doi.org/10.1016/0017-9310(94)00152-L.

    Article  Google Scholar 

  27. Dallaire J, Gosselin L. Various ways to take into account density change in solid–liquid phase change models: formulation and consequences. Int J Heat Mass Transfer. 2016;103:672–83. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.045.

    Article  Google Scholar 

  28. Hassab MA, Sorour MM, Mansour MK, Zaytoun MM. Effect of volume expansion on the melting process’s thermal behavior. Appl Therm Eng. 2017;115:350–62. https://doi.org/10.1016/j.applthermaleng.2016.12.006.

    Article  CAS  Google Scholar 

  29. Klintberg L, Karlsson M, Stenmark L, Schweitz JÅ, Thornell G. A large stroke, high force paraffin phase transition actuator. Sensors Actuators Phys. 2002;96:189–95. https://doi.org/10.1016/S0924-4247(01)00785-3.

    Article  CAS  Google Scholar 

  30. Ogden S, Klintberg L, Thornell G, Hjort K, Bodén R. Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluid Nanofluidics. 2014;17:53–71. https://doi.org/10.1007/s10404-013-1289-3.

    Article  CAS  Google Scholar 

  31. Mehling H, Cabeza LF. Heat and cold storage with PCM: an up to date introduction into basics and applications. Berlin: Springer; 2008. p. 11–55.

    Book  Google Scholar 

  32. Ryu HW, Hong SA, Shin BC, Kim SD. Heat-transfer characteristics of cool-thermal storage-systems. Energy. 1991;16:727–37. https://doi.org/10.1016/0360-5442(91)90022-E.

    Article  CAS  Google Scholar 

  33. Zhang X, Fan Y, Tao X, Yick K. Crystallization and prevention of supercooling of microencapsulated n-alkanes. J Colloid Interface Sci. 2005;281:299–306. https://doi.org/10.1016/j.jcis.2004.08.046.

    Article  CAS  PubMed  Google Scholar 

  34. Dincer I, Ezan MA. Heat storage: a unique solution for energy systems. Berlin: Springer; 2018. p. 57–84.

    Book  Google Scholar 

  35. Faucheux M, Muller G, Havet M, LeBail A. Influence of surface roughness on the supercooling degree: case of selected water/ethanol solutions frozen on aluminium surfaces. Int J Refrig. 2006;29:1218–24. https://doi.org/10.1016/j.ijrefrig.2006.01.002.

    Article  CAS  Google Scholar 

  36. Godin A, Duquesne M, del Barrio EP, Achchaq F, Monneyron P. Bubble agitation as a new low-intrusive method to crystallize glass-forming materials. Energy Procedia. 2017;139:352–7. https://doi.org/10.1016/j.egypro.2017.11.220.

    Article  CAS  Google Scholar 

  37. Sivakumar A, Dhas SAMB. Shock-wave-induced nucleation leading to crystallization in water. J Appl Crystallogr. 2019;52:1016–21. https://doi.org/10.1107/S1600576719009488.

    Article  CAS  Google Scholar 

  38. Ona EP, Ozawa S, Kojima Y, Hitoki M, Hideto H, Hiroyuki K, Masanori S. Effect of ultrasonic irradiation parameters on the supercooling relaxation behavior of PCM. J Chem Eng Jpn. 2003;36:799–805. https://doi.org/10.1252/jcej.36.799.

    Article  CAS  Google Scholar 

  39. Safari A, Saidur R, Sulaiman FA, Yan X, Joe D. A review on supercooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev. 2017;70:905–19. https://doi.org/10.1016/j.rser.2016.11.272.

    Article  CAS  Google Scholar 

  40. Zahir MH, Mohamed SA, Saidur R, Al-Sulaiman FA. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl Energy. 2019;240:793–817. https://doi.org/10.1016/j.apenergy.2019.02.045.

    Article  CAS  Google Scholar 

  41. Huang L, Günther E, Doetsch C, Mehling H. Subcooling in PCM emulsions—part 1: experimental. Thermochim Acta. 2010;509:93–9. https://doi.org/10.1016/j.tca.2010.06.006.

    Article  CAS  Google Scholar 

  42. Günther E, Huang L, Mehling H, Dötsch C. Subcooling in PCM emulsions—part 2: interpretation in terms of nucleation theory. Thermochim Acta. 2011;522:199–204. https://doi.org/10.1016/j.tca.2011.04.027.

    Article  CAS  Google Scholar 

  43. Bédécarrats JP, Strub F, Falcon B, Dumas JP. Phase-change thermal energy storage using spherical capsules: performance of a test plant. Int J Refrig. 1996;19:187–96. https://doi.org/10.1016/0140-7007(95)00080-1.

    Article  Google Scholar 

  44. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev. 2011;15:1373–91. https://doi.org/10.1016/j.rser.2010.10.006.

    Article  CAS  Google Scholar 

  45. Niyas H, Prasad S, Muthukumar P. Performance investigation of a lab–scale latent heat storage prototype—numerical results. Energy Convers Manag. 2017;135:188–99. https://doi.org/10.1016/j.enconman.2016.12.075.

    Article  Google Scholar 

  46. Günther E, Mehling H, Hiebler S. Modeling of subcooling and solidification of phase change materials. Model Simul Mater Sci Eng. 2007;15:879–92. https://doi.org/10.1088/0965-0393/15/8/005.

    Article  CAS  Google Scholar 

  47. Davin T, Lefez B, Guillet A. Supercooling of phase change: a new modeling formulation using apparent specific heat capacity. Int J Therm Sci. 2020;147:106121. https://doi.org/10.1016/j.ijthermalsci.2019.106121.

    Article  Google Scholar 

  48. Sivasamy P, Devaraju A, Harikrishnan S. Review on heat transfer enhancement of phase change materials (PCMs). Mater Today Proc. 2018;5:14423–31. https://doi.org/10.1016/j.matpr.2018.03.028.

    Article  CAS  Google Scholar 

  49. Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev. 2017;74:26–50. https://doi.org/10.1016/j.rser.2017.01.169.

    Article  CAS  Google Scholar 

  50. Yıldız Ç, Arıcı M, Nižetić S, Shahsavar A. Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins. Energy. 2020;207:118223. https://doi.org/10.1016/j.energy.2020.118223.

    Article  CAS  Google Scholar 

  51. Castell A, Solé C, Medrano M, Roca J, Cabeza LF, García D. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng. 2008;28:1676–86. https://doi.org/10.1016/j.applthermaleng.2007.11.004.

    Article  CAS  Google Scholar 

  52. Abdulateef AM, Mat S, Abdulateef J, Sopian K, Al-Abidi AA. Thermal performance enhancement of triplex tube latent thermal storage using fins-nano-phase change material technique. Heat Transf Eng. 2018;39:1067–80. https://doi.org/10.1080/01457632.2017.1358488.

    Article  CAS  Google Scholar 

  53. Wu S, Yan T, Kuai Z, Pan W. Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Mater. 2020;25:251–95. https://doi.org/10.1016/j.ensm.2019.10.010.

    Article  Google Scholar 

  54. Jamekhorshid A, Sadrameli SM, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev. 2014;31:531–42. https://doi.org/10.1016/j.rser.2013.12.033.

    Article  CAS  Google Scholar 

  55. Milián YE, Gutiérrez A, Grágeda M, Ushak S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew Sustain Energy Rev. 2017;73:983–99. https://doi.org/10.1016/j.rser.2017.01.159.

    Article  CAS  Google Scholar 

  56. Tseng YH, Fang MH, Tsai PS, Yang YM. Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation. J Microencap. 2008;22:37–46. https://doi.org/10.1080/02652040400026558.

    Article  CAS  Google Scholar 

  57. Qiao Z, Mao J. Multifunctional poly (melamine-urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity. Mater Sci Eng B. 2017;226:86–93. https://doi.org/10.1016/j.mseb.2017.08.016.

    Article  CAS  Google Scholar 

  58. Taguchi Y, Yokoyama H, Kado H, Tanaka M. Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloids Surf A Physicochem Eng Asp. 2007;301:41–7. https://doi.org/10.1016/j.colsurfa.2006.12.019.

    Article  CAS  Google Scholar 

  59. Alay S, Göde F, Alkan C. Synthesis and thermal properties of poly(n -butyl acrylate)/n -hexadecane microcapsules using different cross-linkers and their application to textile fabrics. J Appl Polym Sci. 2011;120:2821–9. https://doi.org/10.1002/app.33266.

    Article  CAS  Google Scholar 

  60. Qiu X, Lu L, Wang J, Tang G, Song G. Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shells. Sol Energy Mater Sol Cells. 2014;128:102–11. https://doi.org/10.1016/j.solmat.2014.05.020.

    Article  CAS  Google Scholar 

  61. Qiu X, Lu L, Wang J, Tang G, Song G. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell. Thermochim Acta. 2015;620:10–7. https://doi.org/10.1016/j.tca.2015.10.001.

    Article  CAS  Google Scholar 

  62. Sami S, Sadrameli SM, Etesami N. Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems. Appl Therm Eng. 2018;130:1416–24. https://doi.org/10.1016/j.applthermaleng.2017.11.119.

    Article  CAS  Google Scholar 

  63. Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol Energy Mater Sol Cells. 2009;93:1366–76. https://doi.org/10.1016/j.solmat.2009.02.021.

    Article  CAS  Google Scholar 

  64. Kwon J, Kim H. Preparation and application of polyurethane-urea microcapsules containing phase change materials. Fiber Polym. 2006;7:12–9. https://doi.org/10.1007/BF02933596.

    Article  CAS  Google Scholar 

  65. Qiu X, Li W, Song G, Chu X, Tang G. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy. 2012;46:188–99. https://doi.org/10.1016/j.energy.2012.08.037.

    Article  CAS  Google Scholar 

  66. Mert MS, Mert HH, Sert M. Investigation of thermal energy storage properties of a microencapsulated phase change material using response surface experimental design methodology. Appl Therm Eng. 2019;149:401–13. https://doi.org/10.1016/j.applthermaleng.2018.12.064.

    Article  CAS  Google Scholar 

  67. Zhao L, Wang H, Luo J, Liu Y, Song G, Tang G. Fabrication and properties of microencapsulated n-octadecane with TiO2 shell as thermal energy storage materials. Sol Energy. 2016;127:28–35. https://doi.org/10.1016/j.solener.2016.01.018.

    Article  CAS  Google Scholar 

  68. Genc M, Karagoz GZ. Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. Therm Anal Calorim. 2018;131:2373–80. https://doi.org/10.1007/s10973-017-6781-7.

    Article  CAS  Google Scholar 

  69. Hawlader MNA, Uddin MS, Khin MM. Microencapsulated PCM thermal-energy storage system. Appl Energ. 2003;74:195–202. https://doi.org/10.1016/S0306-2619(02)00146-0.

    Article  CAS  Google Scholar 

  70. Borregueroa AM, Valverdea JL, Rodríguez JF, Barber AH, Cubilloc JJ, Carmona M. Synthesis and characterization of microcapsules containing Rubitherm®RT27 obtained by spray drying. Chem Eng J. 2011;166:384–90. https://doi.org/10.1016/j.cej.2010.10.055.

    Article  CAS  Google Scholar 

  71. Sarı A, Alkan C, Bicer A. Thermal energy storage characteristics of micro-nanoencapsulated heneicosane and octacosane with poly(methylmethacrylate) Shell. J Microencap. 2016;33:221–8. https://doi.org/10.3109/02652048.2016.1144820.

    Article  CAS  Google Scholar 

  72. Song S, Dong L, Qu Z, Ren J, Xiong C. Microencapsulated capric-stearic acid with silica shell as a novel phase change material for thermal energy storage. Appl Therm Eng. 2014;70:546–51. https://doi.org/10.1016/j.applthermaleng.2014.05.067.

    Article  CAS  Google Scholar 

  73. Mert MS, Mert HH, Yılmaz C. Preparation and characterization of paraffin microcapsules for energy saving applications. J Appl Polym Sci. 2019;136:47874. https://doi.org/10.1002/app.47874.

    Article  CAS  Google Scholar 

  74. Mert MS, Mert HH, Sert M. Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage. J Therm Anal Calorim. 2019;136:1551–61. https://doi.org/10.1007/s10973-018-7815-5.

    Article  CAS  Google Scholar 

  75. Chen R, Huang X, Zheng R, Xie D, Mei Y, Zou R. Flame-retardancy and thermal properties of a novel phosphorus-modified PCM for thermal energy storage. Chem Eng J. 2020;380:122500. https://doi.org/10.1016/j.cej.2019.122500.

    Article  CAS  Google Scholar 

  76. Fang G, Li H, Chen Z, Liu X. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials. J Hazard Mater. 2010;181:1004–9. https://doi.org/10.1016/j.jhazmat.2010.05.114.

    Article  CAS  PubMed  Google Scholar 

  77. Fang G, Li H, Chen Z, Liu X. Preparation and properties of palmitic acid/SiO2 composites with flame retardant as thermal energy storage materials. Sol Energy Mater Sol Cells. 2011;95:1875–81. https://doi.org/10.1016/j.solmat.2011.02.010.

    Article  CAS  Google Scholar 

  78. Jebasingh E, Arasu V. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy Storage Mater. 2020;24:52–74. https://doi.org/10.1016/j.ensm.2019.07.031.

    Article  Google Scholar 

  79. Kibria MA, Anisur MR, Mahfuz MH, Saidur R, Metselaar IHSC. A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers Manag. 2015;95:69–89. https://doi.org/10.1016/j.enconman.2015.02.028.

    Article  CAS  Google Scholar 

  80. Zhang Y, Wang X, Wu D. Microencapsulation of n-dodecane into zirconia shell doped with rare earth: design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage. Energy. 2016;97:113–26. https://doi.org/10.1016/j.energy.2015.12.114.

    Article  CAS  Google Scholar 

  81. Mert HH, Mert MS. Preparation and characterization of encapsulated phase change materials in presence of gamma alumina for thermal energy storage applications. Thermochim Acta. 2019;681:178382. https://doi.org/10.1016/j.tca.2019.178382.

    Article  CAS  Google Scholar 

  82. Chen DZ, Qin SY, Tsui GCP, Tang CY, Ouyang X, Liu JH, Tang JN, Zuo JD. Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage. Composites B. 2019;157:239–47. https://doi.org/10.1016/j.compositesb.2018.08.066.

    Article  CAS  Google Scholar 

  83. Cárdenas-Ramírez C, Jaramillo F, Gómez M. Systematic review of encapsulation and shape-stabilization of phase change materials. J Energy Storage. 2020;30:101495. https://doi.org/10.1016/j.est.2020.101495.

    Article  Google Scholar 

  84. Săndulescu R, Tertiş M, Cristea C, Bodoki E. New materials for the construction of electrochemical biosensors. In: Biosensors—micro and nanoscale applications. Toonika Rinken, InTech, pp. 1–36; 2015. https://doi.org/10.5772/60510

  85. Badenhorst H. A review of the application of carbon materials in solar thermal energy storage. Sol Energy. 2019;192:35–68. https://doi.org/10.1016/j.solener.2018.01.062.

    Article  CAS  Google Scholar 

  86. Yang X, Yuan Y, Zhang N, Cao X, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66. https://doi.org/10.1016/j.solener.2013.11.021.

    Article  CAS  Google Scholar 

  87. Tian H, Wang W, Ding J, Wei X, Huang C. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials. Sol Energy Mater Sol Cells. 2016;149:187–94. https://doi.org/10.1016/j.solmat.2015.12.038.

    Article  CAS  Google Scholar 

  88. Liu C, Yuan Y, Zhang N, Cao X, Yang X. A novel PCM of lauric–myristic–stearic acid / expanded graphite composite for thermal energy storage. Mater Lett. 2014;120:43–6. https://doi.org/10.1016/j.matlet.2014.01.051.

    Article  CAS  Google Scholar 

  89. Pielichowska K, Bieda J, Szatkowski P. Polyurethane/graphite nano-platelet composites for thermal energy storage. Renew Energy. 2016;91:456–65. https://doi.org/10.1016/j.renene.2016.01.076.

    Article  CAS  Google Scholar 

  90. Karaipekli A, Sarı A. Preparation, thermal properties and thermal reliability of eutectic mixturesof fatty acids/expanded vermiculite as novel form-stable composites for energy storage. J Ind Eng Chem. 2010;16:767–73. https://doi.org/10.1016/j.jiec.2010.07.003.

    Article  CAS  Google Scholar 

  91. Su JF, Wang LX, Ren R. Synthesis of polyurethane microPCMs containing n–octadecane by interfacial polycondensation: influence of styrene–maleic anhydride as a surfactant. Col Surfa Physicochem Engergy Asp. 2007;299:268–75. https://doi.org/10.1016/j.colsurfa.2006.11.051.

    Article  CAS  Google Scholar 

  92. Sarı A, Alkan C, Döğüşcü DK, Biçer A. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol Energy Mater Sol Cell. 2014;126:42–50. https://doi.org/10.1016/j.solmat.2014.03.023.

    Article  CAS  Google Scholar 

  93. Qiu X, Song G, Chu X, Li X, Tang G. Preparation thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage. Thermochim Acta. 2013;551:136–44. https://doi.org/10.1016/j.tca.2012.10.027.

    Article  CAS  Google Scholar 

  94. Liang C, Lingling X, Hongbo S, Zhibin Z. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Convers Manag. 2009;50:723–9. https://doi.org/10.1016/j.enconman.2008.09.044.

    Article  CAS  Google Scholar 

  95. Huo X, Li W, Wang Y, Han N, Wang J, Wang N, Zhang X. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohydr Polym. 2018;200:602–10. https://doi.org/10.1016/j.carbpol.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  96. Lu S, Shen T, Xing J, Song Q, Shao J, Zhang J, Xin C. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization. Mater Lett. 2018;211:36–9. https://doi.org/10.1016/j.matlet.2017.09.074.

    Article  CAS  Google Scholar 

  97. Lashgari S, Arabi H, Mahdavian AR, Ambrogi V. Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell. Appl Energy. 2017;190:612–22. https://doi.org/10.1016/j.apenergy.2016.12.158.

    Article  CAS  Google Scholar 

  98. Borreguero AM, Valverde JL, Rodríguez JF, Barber AH, Cubillo JJ, Carmona M. Synthesis and characterization of microcapsules containing Rubitherm®RT27 obtained by spray drying. J Chem Eng. 2011;166:384–90. https://doi.org/10.1016/j.cej.2010.10.055.

    Article  CAS  Google Scholar 

  99. Sari A, Alkan C, Derya KD, Kizil Ç. Micro/nanoencapsulatedn-tetracosane and n-octadecane eutectic mixture with polystyreneshell forlow-temperature latent heat thermal energy storage applications. Sol Energy. 2015;115:195–203. https://doi.org/10.1016/j.solener.2015.02.035.

    Article  CAS  Google Scholar 

  100. Sánchez-Silva L, Rodríguez JF, Sánchez P. Influence of different suspension stabilizers on the preparation of Rubitherm RT31 microcapsules. Cols Surfa. 2011;390:62–6. https://doi.org/10.1016/j.colsurfa.2011.09.004.

    Article  CAS  Google Scholar 

  101. Tang B, Qiu M, Zhang S. Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Sol Energy Mater Sol Cell. 2012;105:242–8. https://doi.org/10.1016/j.solmat.2012.06.012.

    Article  CAS  Google Scholar 

  102. Fang G, Li H, Liu X. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage. Mater Chem Phys. 2010;122:533–6. https://doi.org/10.1016/j.matchemphys.2010.03.042.

    Article  CAS  Google Scholar 

  103. Fei B, Lu H, Qi K, Shi H, Liu T, Li X, Xin JH. Multi-functional microcapsules produced by aerosol reaction. J Aero Sci. 2008;39:1089–98. https://doi.org/10.1016/j.jaerosci.2008.07.007.

    Article  CAS  Google Scholar 

  104. Chai L, Wang X, Wu D. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Appl Energy. 2015;138:661–74. https://doi.org/10.1016/j.apenergy.2014.11.006.

    Article  CAS  Google Scholar 

  105. Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol Cell. 2009;93:571–6. https://doi.org/10.1016/j.solmat.2008.11.057.

    Article  CAS  Google Scholar 

  106. Fang G, Li H, Chen Z, Liu X. Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. J Energy. 2010;35:4622–6. https://doi.org/10.1016/j.energy.2010.09.046.

    Article  CAS  Google Scholar 

  107. Sarı A, Karaipekli A. Preparation thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys. 2008;109:459–64. https://doi.org/10.1016/j.matchemphys.2007.12.016.

    Article  CAS  Google Scholar 

  108. Sarı A, Karaipekli A, Alkan C. Preparation characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem Eng J. 2009;155:899–904. https://doi.org/10.1016/j.cej.2009.09.005.

    Article  CAS  Google Scholar 

  109. Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;134:373–81. https://doi.org/10.1016/j.enconman.2016.12.053.

    Article  CAS  Google Scholar 

  110. Sarı A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Convers Manag. 2016;117:132–41. https://doi.org/10.1016/j.enconman.2016.02.078.

    Article  CAS  Google Scholar 

  111. Huang X, Alva G, Liu L, Fang G. Preparation characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form–stable thermal energy storage materials. Sol Energy Mater Sol Cell. 2017;166:157–66. https://doi.org/10.1016/j.solmat.2017.03.026.

    Article  CAS  Google Scholar 

  112. Choi SU, Enhancing thermal conductivity of fluids with nanoparticles. In: ASME ınternational mechanical engineering congress and exposition, pp. 99–105; 1995.

  113. Tariq SL, Ali HM, Akram MA, Janjua MM, Ahmadlouydarab M. Nanoparticles enhanced phase change materials (NePCMs)—a recent review. Appl Therm Eng. 2019;176:115305. https://doi.org/10.1016/j.applthermaleng.2020.115305.

    Article  Google Scholar 

  114. Jurčević M, Nižetić S, Arıcı M, Ocłoń P. Comprehensive analysis of preparation strategies for phase change nanocomposites and nanofluids with brief overview of safety equipment. J Clean Prod. 2020;274:122963. https://doi.org/10.1016/j.jclepro.2020.122963.

    Article  CAS  Google Scholar 

  115. Pradeep N, Paramasivam K, Rajesh T, Iyahraja S. Materials today: proceedings silver nanoparticles for enhanced thermal energy storage of phase change materials. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.02.671.

    Article  Google Scholar 

  116. Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux. Int J Heat Mass Transf. 2013;67:523–34. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.001.

    Article  CAS  Google Scholar 

  117. Nada SA, El-nagar DH, Hussein HMS. Improving the thermal regulation and e fficiency enhancement of PCM- Integrated PV modules using nano particles. Energy Convers Manag. 2018;166:735–43. https://doi.org/10.1016/j.enconman.2018.04.035.

    Article  CAS  Google Scholar 

  118. Wang Q, Wei W, Li D, Qi H, Wang F, Arıcı M. Experimental investigation of thermal radiative properties of Al2O3-paraffin nanofluid. Sol Energy. 2019;177:420–6. https://doi.org/10.1016/j.solener.2018.11.034.

    Article  CAS  Google Scholar 

  119. Saranprabhu MK, Rajan KS. Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage. Renew Energy. 2019;141:451–9. https://doi.org/10.1016/j.renene.2019.04.027.

    Article  CAS  Google Scholar 

  120. Dhivya S, Hussain SI, Sheela SJ, Kalaiselvam S. Experimental study on microcapsules of Ag doped ZnO nanomaterials enhanced Oleic-Myristic acid eutectic PCM for thermal energy storage. Thermochim Acta. 2019;671:70–82. https://doi.org/10.1016/j.tca.2018.11.010.

    Article  CAS  Google Scholar 

  121. Motahar S, Alemrajabi AA, Khodabandeh R. Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure. Int J Heat Mass Transf. 2017;109:134–46. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.109.

    Article  CAS  Google Scholar 

  122. Kabeel AE, Abdelgaied M, Eisa A. Effect of graphite mass concentrations in a mixture of graphite nanoparticles and paraffin wax as hybrid storage materials on performances of solar still. Renew Energy. 2019;132:119–28. https://doi.org/10.1016/j.renene.2018.07.147.

    Article  CAS  Google Scholar 

  123. Chang TC, Lee S, Fuh YK, Peng YC, Lin ZY. PCM based heat sinks of paraffin/nanoplatelet graphite composite for thermal management of IGBT. Appl Therm Eng. 2017;112:1129–36. https://doi.org/10.1016/j.applthermaleng.2016.11.010.

    Article  CAS  Google Scholar 

  124. Lu W, Liu G, Xiong Z, Wu Z, Zhang G. An experimental investigation of composite phase change materials of ternary nitrate and expanded graphite for medium-temperature thermal energy storage. Sol Energy. 2020;195:573–80. https://doi.org/10.1016/j.solener.2019.11.102.

    Article  CAS  Google Scholar 

  125. Vivekananthan M, Amirtham VA. Characterisation and thermophysical properties of graphene nanoparticles dispersed erythritol PCM for medium temperature thermal energy storage applications. Thermochim Acta. 2019;676:94–103. https://doi.org/10.1016/j.tca.2019.03.037.

    Article  CAS  Google Scholar 

  126. He M, Yang L, Lin W, Chen J, Mao X, Ma Z. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage. 2019;25:100874. https://doi.org/10.1016/j.est.2019.100874.

    Article  Google Scholar 

  127. Chen G, Su Y, Jiang D, Pan L, Li S. An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications. Appl Energy. 2020;264:114786. https://doi.org/10.1016/j.apenergy.2020.114786.

    Article  CAS  Google Scholar 

  128. Cui Y, Liu C, Hu S, Yu X. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells. 2011;95:1208–12. https://doi.org/10.1016/j.solmat.2011.01.021.

    Article  CAS  Google Scholar 

  129. Nourani M, Hamdami N, Keramat J, Moheb A, Shahedi M. Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyllactylate as a stable phase change material with high thermal conductivity. Renew Energy. 2016;88:474–82. https://doi.org/10.1016/j.renene.2015.11.043.

    Article  CAS  Google Scholar 

  130. Sharma RK, Ganesan P, Tyagi V, Metselaar HSC, Sandaran SC. Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM). Appl Therm Eng. 2016;99:1254–62. https://doi.org/10.1016/j.applthermaleng.2016.01.130.

    Article  CAS  Google Scholar 

  131. Wang J, Xie H, Xin Z, Li Y. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon. 2010;48:3979–86. https://doi.org/10.1016/j.carbon.2010.06.044.

    Article  CAS  Google Scholar 

  132. Cui W, Yuan Y, Sun L, Cao X, Yang X. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials. Renew Energy. 2016;99:1029–37. https://doi.org/10.1016/j.renene.2016.08.001.

    Article  CAS  Google Scholar 

  133. Soni V, Kumar A, Jain VK. Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery. Ren Energy. 2018;127:587–601. https://doi.org/10.1016/j.renene.2018.05.009.

    Article  CAS  Google Scholar 

  134. Ebadi S, Humaira TS, Abbas AA, Mahmud S. Geometry and nanoparticle loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system. Appl Therm Eng. 2018;141:724–40. https://doi.org/10.1016/j.applthermaleng.2018.05.091.

    Article  CAS  Google Scholar 

  135. Lin SC, Al-Kayiem HH. Evaluation of copper nanoparticles—paraffin wax compositions for solar thermal energy storage. Sol Energy. 2016;132:267–78. https://doi.org/10.1016/j.solener.2016.03.004.

    Article  CAS  Google Scholar 

  136. Owolabi AL, Al-Kayiem HH, Baheta AT. Nanoadditives induced enhancement of the thermal properties of paraffin-based nanocomposites for thermal energy storage. Sol Energy. 2016;135:644–53. https://doi.org/10.1016/j.solener.2016.06.008.

    Article  CAS  Google Scholar 

  137. Babapoor A, Karimi G. Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: comparison and optimization. Appl Therm Eng. 2015;90:945–51. https://doi.org/10.1016/j.applthermaleng.2015.07.083.

    Article  CAS  Google Scholar 

  138. Dsilva WRD, Suganthi L, Iniyan S, Davies PA. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J Clean Prod. 2018;192:9–29. https://doi.org/10.1016/j.jclepro.2018.04.201.

    Article  CAS  Google Scholar 

  139. Aslfattahi N, Saidur R, Arifutzzaman A, Sadri R, Nuno B, Mohd FMS, Philip AM, Luc B, Richard JD, Suhana MS, Boon TG, Nor ACS. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites. J Energy Storage. 2020;27:101115. https://doi.org/10.1016/j.est.2019.101115.

    Article  Google Scholar 

  140. Colla L, Fedele L, Mancin S, Danza L, Manca O. Nano-PCMs for enhanced energy storage and passive cooling applications. Appl Therm Eng. 2017;110:584–9. https://doi.org/10.1016/j.applthermaleng.2016.03.161.

    Article  CAS  Google Scholar 

  141. Srinivasan S, Diallo MS, Saha SK, Abass OA, Sharma A, Balasubramanian G. Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane. Int J Heat Mass Transf. 2017;114:318–23. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.081.

    Article  CAS  Google Scholar 

  142. Pahamli Y, Hosseini MJ, Ranjbar AA, Bahrampoury R. Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger. J Taiwan Inst Chem Eng. 2017;81:316–34. https://doi.org/10.1016/j.jtice.2017.09.044.

    Article  CAS  Google Scholar 

  143. Weigand R, Hess K, Fleischer AS. Experimental analysis of the impact of nanoinclusions and surfactants on the viscosity of paraffin-based energy storage materials. J Heat Transf. 2018;140:1–6. https://doi.org/10.1115/1.4040781.

    Article  CAS  Google Scholar 

  144. Zeng Y, Fan LW, Xiao YQ, Yu ZT, Cen KF. An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity. Int J Heat Mass Transf. 2013;66:111–7. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.022.

    Article  CAS  Google Scholar 

  145. Mohamed NH, Soliman FS, El Maghraby H, Moustfa YM. Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina energy storage. Renew Sustain Energy Rev. 2017;17:1052–8. https://doi.org/10.1016/j.rser.2016.12.009.

    Article  CAS  Google Scholar 

  146. Şahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites. Sol Energy Mater Sol Cells. 2015;137:61–7. https://doi.org/10.1016/j.solmat.2015.01.027.

    Article  CAS  Google Scholar 

  147. Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97. https://doi.org/10.1016/j.ijmecsci.2017.09.045.

    Article  Google Scholar 

  148. Kumar MS, Krishna VM. Experimental investigation on performance of hybrid PCM’s on addition of nano particles in thermal energy storage. Mater Today Proc. 2019;17:271–6. https://doi.org/10.1016/j.matpr.2019.06.430.

    Article  CAS  Google Scholar 

  149. Arshad A, Jabbal M, Yan Y. Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics. Energy Convers Manag. 2020;205:0196–8904. https://doi.org/10.1016/j.enconman.2019.112444.

    Article  CAS  Google Scholar 

  150. Faraji H, El Alami M, Arshad A. Investigating the effect of single and hybrid nanoparticles on melting of phase change material in a rectangular enclosure with finite heat source. Int J Energy Res. 2020. https://doi.org/10.1002/er.6095.

    Article  Google Scholar 

  151. Hosseinzadeh K, Alizadeh M, Tavakoli MH, Ganji DD. Investigation of phase change material solidification process in a LHTESS in the presence of fins with variable thickness and hybrid nanoparticles. Appl Therm Eng. 2019;152:706–17. https://doi.org/10.1016/j.applthermaleng.2019.02.111.

    Article  CAS  Google Scholar 

  152. Li Z, Lu Y, Huang R, Chang J, Yu X, Jiang R, Yu X, Rokilly AP. Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Appl Energy. 2020;283:116277. https://doi.org/10.1016/j.apenergy.2020.116277.

    Article  Google Scholar 

  153. Han D, Guene Lougou B, Xu Y, Shuai Y, Huang X. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage. Appl Energy. 2019;264:114674. https://doi.org/10.1016/j.apenergy.2020.114674.

    Article  CAS  Google Scholar 

  154. Jurčević M, Nižetić S, Arıcı M, Hoang Anh Tuan A, Giama E, Papadopoulos A. Thermal constant analysis of phase change nanocomposites and discussion on selection strategies with respect to economic constraints. Sustain Energy Technol Assess. 2020;43:100957. https://doi.org/10.1016/j.seta.2020.100957.

    Article  Google Scholar 

  155. Nižetić S, Jurčević M, Arıcı M, Arasu AV, Xie G. Nano-enhanced phase change materials and fluids in energy applications: a review. Renew Sustain Energy Rev. 2020;129:109931. https://doi.org/10.1016/j.rser.2020.109931.

    Article  CAS  Google Scholar 

  156. Li D, Wu Y, Wang B, Liu C, Arıcı M. Optical and thermal performance of glazing units containing PCM in buildings: a review. Constr Build Mater. 2020;233:117327. https://doi.org/10.1016/j.conbuildmat.2019.117327.

    Article  CAS  Google Scholar 

  157. Dastmalchi M, Boyaghchi FA. Exergy and economic analyses of nanoparticle-enriched phase change material in an air heat exchanger for cooling of residential buildings. J Energy Storage. 2020;32:101705. https://doi.org/10.1016/j.est.2020.101705.

    Article  Google Scholar 

  158. Said MA, Hassan H. Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit. Energy Convers Manag. 2018;171:903–16. https://doi.org/10.1016/j.enconman.2018.06.051.

    Article  CAS  Google Scholar 

  159. Nada SA, Alshaer WG, Saleh RM. Experimental investigation of PCM transient performance in free cooling of the fresh air of air conditioning systems. J Build Eng. 2019;29:101153. https://doi.org/10.1016/j.jobe.2019.101153.

    Article  Google Scholar 

  160. Soni V, Kumar A, Jain VK. Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery. Renew Energy. 2018;127:587–601. https://doi.org/10.1016/j.renene.2018.05.009.

    Article  CAS  Google Scholar 

  161. Sharma S, Micheli L, Chang W, Tahir AA, Reddy KS, Mallick TK. Nano-enhanced phase change material for thermal management of BICPV. Appl Energy. 2017;208:719–33. https://doi.org/10.1016/j.apenergy.2017.09.076.

    Article  Google Scholar 

  162. Krishna J, Kishore PS, Solomon AB. Heat pipe with nano enhanced-PCM for electronic cooling application. Exp Therm Fluid Sci. 2017;81:84–92. https://doi.org/10.1016/j.expthermflusci.2016.10.014.

    Article  CAS  Google Scholar 

  163. Jilte R, Afzal A, Panchal S. A novel battery thermal management system using nano-enhanced phase change materials. Energy. 2021;219:119564. https://doi.org/10.1016/j.energy.2020.119564.

    Article  CAS  Google Scholar 

  164. Narayanan SS, Kardam A, Kumar V, Bhardwaj N, Madhwal D, Shukla P, Kumar A, Verma A, Jain VK. Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating. Resour Technol. 2017;3:272–9. https://doi.org/10.1016/j.reffit.2016.12.004.

    Article  Google Scholar 

  165. Venkitaraj KP, Suresh S, Venugopal A. Experimental study on the thermal performance of nano enhanced pentaerythritol in IC engine exhaust heat recovery application. Appl Therm Eng. 2018;137:461–74. https://doi.org/10.1016/j.applthermaleng.2018.03.062.

    Article  CAS  Google Scholar 

  166. Ma Z, Lin W, Sohel MI. Nano-enhanced phase change materials for improved building performance. Renew Sustain Energy Rev. 2016;58:1256–68. https://doi.org/10.1016/j.rser.2015.12.234.

    Article  CAS  Google Scholar 

  167. Bayat M, Faridzadeh MR, Toghraie D. Investigation of finned heat sink performance with nano enhanced phase change material (NePCM). Therm Sci Eng Prog. 2018;5:50–9. https://doi.org/10.1016/j.tsep.2017.10.021.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Algerian Ministry of Higher Education and Scientific Research (DGRSDT / MESRS) under the framework of a PRFU Project (a11n01un030120190003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Teggar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teggar, M., Arıcı, M., Mert, M.S. et al. A comprehensive review of micro/nano enhanced phase change materials. J Therm Anal Calorim 147, 3989–4016 (2022). https://doi.org/10.1007/s10973-021-10808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10808-0

Keywords

Navigation