Skip to main content
Log in

Catole coconut (Syagrus cearensis) oil: physicochemical characterization and thermo-oxidative stability by TG/DTG/DTA and Rancimat

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Vegetable oils are subjected to heat treatments during processing and changes during storage. Thus, it is required, for usage as a food source, the evaluation of their thermo-oxidative stability and physicochemical characteristics. In this context, the objective of this paper was to evaluate the oil of catole coconut (Syagrus cearensis), aiming to characterize its identity and quality, as well as its antioxidant capacity and thermo-oxidative stability. The catole coconut was collected in the city of Lagoa Seca-PB, Brazil, its almonds were dried in a stove and the catole oil was obtained by cold pressing. The results of the physicochemical parameters complied with the current legislation, with average values ​​of 2.48 mg KOH g−1 oil for acid value, 0.14 meq peroxide kg−1 oil for peroxide value and 253 mg KOH g−1 oil for saponification value. Catole oil presented the profile of saturated fatty acids (84.42%), with the predominance of lauric acid (45.06%), besides major phenolic compounds such as salicylic acid [12.324 mg (100 g−1) of oil] and myricetin [1.405 mg (100 g−1) of oil]. The thermogravimetric profile remained stable to decomposition at temperatures up to around 240 °C and oxidative stability withstood at 110 °C for more than 48 h. Therefore, it was possible to identify and characterize this unexplored oilseed species of the Brazilian semiarid, diversifying its use in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Do Nascimento VT, De Moura NP, Da Silva Vasconcelos MA, Maciel MIS, De Albuquerque UP. Chemical characterization of native wild plants of dry seasonal forests of the semi-arid region of northeastern Brazil. Food Res Int. 2011;44:2112–9. https://doi.org/10.1016/j.foodres.2010.12.024.

    Article  CAS  Google Scholar 

  2. Silva RB, Silva-Júnior EV, Rodrigues LC, Andrade LHC, DA Silva SI, Harand W, et al. A comparative study of nutritional composition and potential use of some underutilized tropical fruits of Arecaceae An Acad Bras Cienc. Acad Brasil Ciências. 2015;87:1701–9.

    Article  CAS  Google Scholar 

  3. Leal LB, Sousa GD, Seixas KB, de Souza PHN, de Santana DP. Determination of the critical hydrophile-lipophile balance of licuri oil from Syagrus coronata: application for topical emulsions and evaluation of its hydrating function. Braz J Pharm Sci. 2013;49:167–73.

    Article  CAS  Google Scholar 

  4. Kumar SN. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil. J Agric Food Chem. 2011;59:13050–8.

    Article  CAS  Google Scholar 

  5. Hughes C, Fenical W. Antibacterials from the sea. Chem Eur J. 2010;16:12512–25.

    Article  CAS  Google Scholar 

  6. Coimbra MC, Jorge N. Fatty acids and bioactive compounds of the pulps and kernels of Brazilian palm species, guariroba (Syagrus oleraces), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata). J Sci Food Agric. 2012;92:679–84.

    Article  CAS  Google Scholar 

  7. André C, Castanheira I, Cruz JM, Paseiro P, Sanches-Silva A. Analytical strategies to evaluate antioxidants in food: a review. Trends Food Sci Technol. 2010;21:229–46.

    Article  Google Scholar 

  8. Maganha EG, da Halmenschlage R C, Rosa RM, Henriques JAP, de RamosAll P, Saffi J. Pharmacological evidences for the extracts and secondary metabolites from plants of the genus Hibiscus. Food Chem. 2010;118:1–10.

    Article  CAS  Google Scholar 

  9. AOCS. Official Methods and Recommended Practices of the American Oil Chemists' Society. USA: Champaign; 2014.

  10. AOAC Association of Official Analytical Chemists. Official methods of analysis of AOAC International.19 ed. Washington, D.C.; 2000.

  11. ASTM D4052. Standard Test Method for Density ,Relative Density , and API Gravity of Liquids by Digital Density Meter; 2015.

  12. Hartman L, Lago RC. Rapid preparation of fatty acid methyl esters from lipids. Lab Pract. 1973;22:475–6.

    CAS  PubMed  Google Scholar 

  13. Alcântara MA, de Lima AEA, Braga ALM, Tonon RV, Galdeano MC, da Mattos MC, et al. Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. Powder Technol. 2019;354:877–85.

    Article  Google Scholar 

  14. Khattab RY, Zeitoun MA. Quality evaluation of flaxseed oil obtained by different extraction techniques. LWT Food Sci Technol. 2013;53:338–45.

    Article  CAS  Google Scholar 

  15. Carrasco-Pancorbo A, Gómez-Caravaca AM, Cerretani L, Bendini A, Segura-Carretero A, Fernández-Gutiérrez A. A simple and rapid electrophoretic method to characterize simple phenols, lignans, complex phenols, phenolic acids, and flavonoids in extra-virgin olive oil. J Sep Sci. 2006;29:2221–33.

    Article  CAS  Google Scholar 

  16. EN 14112. Standard fat and oil derivatives—Fatty acid methyl esters ( FAME )—Determination of oxidation stability (Acelerated Oxidation Test). 2016.

  17. Codex Standard for named vegetable oils. Codex Standard for fats and oils from vegetable sources. CODEX-STAND 210; 2009.

  18. Liau KM, Lee YY, Chen CK, Rasool AHG. An open-label pilot study to assess the efficacy and safety of virgin coconut oil in reducing visceral adiposity. ISRN Pharmacol. 2011;2011:1–7.

    Article  Google Scholar 

  19. AOCS—Official Methods and Recommended Pratices of the AOCS. 5 ed. American Oil chemist Society: Champaing, Illinois; 2004.

  20. Visconde Brasil R, Luiz Â, Cavallieri F, Luíza A, Costa M, Ássima M, et al. Caracterização física e química do óleo de pequi exposto a diferentes condições de armazenamento. 2010.

  21. Granato D, Nunes D. Análises químicas, propriedades funcionais e controle de qualidade de alimentos e bebidas: uma abordagem teórico-prática. 2017.

  22. Duarte PH. Otimização da síntese e caracterização do biodiesel metílico e etílico do óleo de licuri (Syagrus coronata), e adição de ésteres metílicos como aditivo em blendas de biodiesel de soja. Ituiutaba; 2018.

  23. Ricardo WMT, Bernardo CF, Feroldi M, Cremonez P, Talita SL, Bonassa G, et al. Evaluation of production of methyl esters and glycerol afrom mixtures of residual oil, soybean and canola. Rev Tecnológica. 2015; Special Edition 2014:73–81.

  24. Correia IMS, Araújo GS, Paulo JBA, De Sousa EMBD. Avaliação das potencialidades e características físico- químicas do óleo de Girassol (Helianthus annuus L.) e Coco (Cocos nucifera L.) produzidos no Nordeste brasileiro. Scientia plena. 2014;10:1–7.

    Google Scholar 

  25. Martins JS, Santos JCO. Estudo comparativo das propriedades de óleo de coco obtido pelos processos industrial e artesanal. An do 5° Encontro Reg Química 4° Encontro Nac Química. São Paulo: Editora Edgard Blücher; 2015. pp. 515–26.

  26. de Camargo AC, Regitano-d’Arce MAB, de Alencar SM, Canniatti-Brazaca SG, de Souza Vieira TMF, Shahidi F. Chemical changes and oxidative stability of peanuts as affected by the dry-blanching. J Am Oil Chem Soc. 2016;93(8):1101–9.

    Article  Google Scholar 

  27. Mansor TST, Man YC, Shuhaimi M, Afiq MA, Nurul FK. Physicochemical properties of virgin coconut oil extracted from different processing methods. Int Food Res J. 2012;19(3):837.

    CAS  Google Scholar 

  28. Assunção ML, Ferreira HS, dos Santos AF, Cabral CR, Florêncio TMMT. Effects of dietary coconut oil on the biochemical and anthropometric profiles of women presenting abdominal obesity. Lipids. 2009;44:593–601.

    Article  Google Scholar 

  29. Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92:1023–30.

    Article  CAS  Google Scholar 

  30. Faria JP, Arellano DB, Grimaldi R, Silva LCR. Caracterização química da amêndoa de coquinho-azedo (Butia capitata var capitata). Rev Bras Frutic. Sociedade Brasileira de Fruticultura; 2008.

  31. Halliwell B, Gutteridge JMC. (2015) Free radicals in biology and medicine. 5th ed. Oxford, United Kingdom; 2015.

  32. Nelson DL, Cox MM. Princípios de Bioquímica de Lehninger. 6th ed. New York; 2014.

  33. Baynes JW, Dominiczak MH. Bioquímica Médica. 5th ed. Elsevier; 2019.

    Google Scholar 

  34. Grosser T, Smyth E, FitzGerald GA. Anti-inflammatory, antipyretic, and analgesic agents; pharmacotherapy of gout. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 2011. p. 959–1004.

    Google Scholar 

  35. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76:560–8.

    Article  CAS  Google Scholar 

  36. Redondo-Cuevas L, Castellano G, Torrens F, Raikos V. Revealing the relationship between vegetable oil composition and oxidative stability: a multifactorial approach. J Food Compos Anal. 2018;66:221–9. https://doi.org/10.1016/j.jfca.2017.12.027.

    Article  CAS  Google Scholar 

  37. García-Moreno PJ, Pérez-Gálvez R, Guadix A, Guadix EM. Influence of the parameters of the Rancimat test on the determination of the oxidative stability index of cod liver oil. LWT Food Sci Technol. 2013;51:303–8.

    Article  Google Scholar 

  38. Maszewska M, Florowska A, Dłuzewska E, Wroniak M, Marciniak-Lukasiak K, Zbikowska A. Oxidative stability of selected edible oils. Molecules. 2018;23:15–7.

    Article  Google Scholar 

  39. Moigradean D, Poiana M-A, Gogoasa I. Quality characteristics and oxidative stability of coconut oil during storage. J Agroaliment Process Technol. 2012;18:272–6.

    Google Scholar 

  40. Chacon G, Maria DC, Vitória DF, Heloísa DM, Clemente G. Influence of the atmosphere on the decomposition of vegetable oils : study of the profiles of FTIR spectra and evolution of gaseous products. J Therm Anal Calorim. 2020;140:2247–58. https://doi.org/10.1007/s10973-019-08960-9.

    Article  CAS  Google Scholar 

  41. Santos AG, Caldeira VP, Souza LD, Oliveira DS, Araujo AS, Luz GE. Study of the thermal stability by thermogravimetry for oil, biodiesel and blend (B10) of different oilseeds. J Therm Anal Calorim. 2016;123(3):2021–8. https://doi.org/10.1007/s10973-015-4943-z.

    Article  CAS  Google Scholar 

  42. Faria EA, Leles MIG, Ionashiro M, Zuppa de TO, Antonio Filho NR. Estudo da estabilidade térmica de óleos e gorduras vegetais por TG/DTG e DTA. Eclética Química 2002;27.

  43. Farhoosh R, Moosavi SMR. Rancimat test for the assessment of used frying oils quality. J Food Lipids. 2007;14:263–71.

    Article  CAS  Google Scholar 

  44. Volli V, Purkait MK. Physico-chemical properties and thermal degradation studies of commercial oils in nitrogen atmosphere. Fuel. 2014;117:1010–9.

    Article  CAS  Google Scholar 

  45. Caeser A, Portella F, Munaro M, Donizete Ascêncio S, De C, Siqueira A, et al. Caracterização físico-química do óleo essencial da Siparuna guianensis Aublet. Quim Nov. 2014;37:844–9.

    Google Scholar 

  46. Mosarof MH, Kalam MA, Masjuki HH, Arslan A, Monirul IM, Ruhul AM, et al. Analysis of thermal stability and lubrication characteristics of Millettia pinnata oil. RSC Adv. 2016;6:81414–25.

    Article  CAS  Google Scholar 

  47. Melo E, Michels F, Arakaki D, Lima N, Gonçalves D, Cavalheiro L, et al. First study on the oxidative stability and elemental analysis of Babassu (Attalea speciosa) edible oil produced in Brazil using a domestic extraction machine. Molecules. 2019;24:4235.

    Article  CAS  Google Scholar 

  48. Gharby S, Hicham H, Boulbaroud S, Bouzoubaâ Z, el Madani N, Chafchaouni I, et al. The stability of vegetable oils (sunflower, rapeseed and palm) sold on market at high temperature. Int J Chem Biochem Sci. 2014;5:47–54.

    Google Scholar 

  49. Ayyildiz HF, Topkafa M, Kara H, Sherazi STH. Evaluation of fatty acid composition, tocols profile, and oxidative stability of some fully refined edible oils. Int J Food Prop. 2015;18:2064–76.

    Article  CAS  Google Scholar 

  50. Rohman A, Che Man YB. Application of FTIR spectroscopy for monitoring the stabilities of selected vegetable oils during thermal oxidation. Int J Food Prop. 2013;16:1594–603.

    Article  CAS  Google Scholar 

  51. Castilho-Almeida EW, Santos HFD, Miranda AMD, Jorio A, Ferreira EHM, Achete CA, Almeida WBD. Estudo teórico e experimental de espectros infravermelho de ésteres de ácido graxo presentes na composição do biodiesel de soja. Quim Nova. 2012;35(9):1752–7.

    Article  CAS  Google Scholar 

  52. Guillén MD, Cabo N. Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. J Sci Food Agric. 2000;80:2028–36.

    Article  Google Scholar 

  53. Muik B, Lendl B, Molina-Diaz A, Valcarcel M, Ayora-Cañada MJ. Two-dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy. Anal Chim Acta. 2007;593:54–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Universidade Federal da Paraíba, Brazil, and its Research and Extension Nucleus of the Fuel Laboratory for the physical and structural conditions for conducting the analyses and the Higher Education Personnel Improvement Coordination (CAPES), Brazil, and the Graduation Support Program. (PROAP), Brazil, for the financial support for the accomplishment of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Maria Tribuzy de Magalhães Cordeiro.

Ethics declarations

Conflict of interest

The authors declare the absence of conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meireles, B.R.L.A., Alcântara, M.A., Polari, I.d. et al. Catole coconut (Syagrus cearensis) oil: physicochemical characterization and thermo-oxidative stability by TG/DTG/DTA and Rancimat. J Therm Anal Calorim 147, 3591–3598 (2022). https://doi.org/10.1007/s10973-021-10789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10789-0

Keywords

Navigation